Toxoplasma gondii 70 kDa Heat Shock Protein: Systemic Detection Is Associated with the Death of the Parasites by the Immune Response and Its Increased Expression in the Brain Is Associated with Parasite Replication
The heat shock protein of Toxoplasma gondii (TgHSP70) is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM)-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs) systemically, as well as the protein in the brain of resistant (BALB/c) and susceptible (C57BL/6) mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.
References
[1]
Weiss LM, Dubey JP (2009) Toxoplasmosis: A history of clinical observations. Int J Parasitol 39: 895–901. doi: 10.1016/j.ijpara.2009.02.004
[2]
Weiss LM, Ma YF, Takvorian PM, Tanowitz HB, Wittner M (1998) Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect Immun 66: 3295–3302.
[3]
Silva NM, Gazzinelli RT, Silva DA, Ferro EA, Kasper LH, et al. (1998) Expression of Toxoplasma gondii-specific heat shock protein 70 during In vivo conversion of bradyzoites to tachyzoites. Infect Immun 66: 3959–3963.
[4]
Ma GY, Zhang JZ, Yin GR, Zhang JH, Meng XL, et al. (2009) Toxoplasma gondii: proteomic analysis of antigenicity of soluble tachyzoite antigen. Exp Parasitol 122: 41–46. doi: 10.1016/j.exppara.2009.01.011
[5]
Dobbin CA, Smith NC, Johnson AM (2002) Heat shock protein 70 is a potential virulence factor in murine Toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide. J Immunol 169: 958–965. doi: 10.4049/jimmunol.169.2.958
[6]
Mun HS, Aosai F, Norose K, Chen M, Hata H, et al. (2000) Toxoplasma gondii Hsp70 as a danger signal in toxoplasma gondii-infected mice. Cell Stress Chaperones 5: 328–335. doi: 10.1379/1466-1268(2000)005<0328:tghaad>2.0.co;2
[7]
Mun HS, Aosai F, Norose K, Piao LX, Fang H, et al. (2005) Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasma gondii-derived heat shock protein 70. Infect Immun 73: 4634–4642. doi: 10.1128/iai.73.8.4634-4642.2005
[8]
Aosai F, Chen M, Kang HK, Mun HS, Norose K, et al. (2002) Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen. Cell Stress Chaperones 7: 357–364. doi: 10.1379/1466-1268(2002)007<0357:tgdhsp>2.0.co;2
[9]
Aosai F, Rodriguez Pena MS, Mun HS, Fang H, Mitsunaga T, et al. (2006) Toxoplasma gondii-derived heat shock protein 70 stimulates maturation of murine bone marrow-derived dendritic cells via Toll-like receptor 4. Cell Stress Chaperones 11: 13–22. doi: 10.1379/csc-138r.1
[10]
Chen M, Aosai F, Norose K, Mun HS, Yano A (2003) The role of anti-HSP70 autoantibody-forming V(H)1-J(H)1 B-1 cells in Toxoplasma gondii-infected mice. Int Immunol 15: 39–47. doi: 10.1093/intimm/dxg004
[11]
Mun HS, Aosai F, Yano A (1999) Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii. Microbiol Immunol 43: 471–479. doi: 10.1111/j.1348-0421.1999.tb02430.x
[12]
Kovacs-Nolan J, Mine Y (2012) Egg yolk antibodies for passive immunity. Annu Rev Food Sci Technol 3: 163–182. doi: 10.1146/annurev-food-022811-101137
[13]
Spillner E, Braren I, Greunke K, Seismann H, Blank S, et al. (2012) Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. Biologicals 40: 313–322. doi: 10.1016/j.biologicals.2012.05.003
[14]
Ferreira Junior A, Santiago FM, Silva MV, Ferreira FB, Macedo Junior AG, et al. (2012) Production, characterization and applications for Toxoplasma gondii-specific polyclonal chicken egg yolk immunoglobulins. PLoS One 7: e40391. doi: 10.1371/journal.pone.0040391
[15]
Barbosa BF, Silva DA, Costa IN, Pena JD, Mineo JR, et al. (2007) Susceptibility to vertical transmission of Toxoplasma gondii is temporally dependent on the preconceptional infection in Calomys callosus. Placenta 28: 624–630. doi: 10.1016/j.placenta.2006.10.011
[16]
Silva DA, Lobato J, Mineo TW, Mineo JR (2007) Evaluation of serological tests for the diagnosis of Neospora caninum infection in dogs: optimization of cut off titers and inhibition studies of cross-reactivity with Toxoplasma gondii. Vet Parasitol 143: 234–244. doi: 10.1016/j.vetpar.2006.08.028
[17]
Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A (1991) Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 146: 286–292.
[18]
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
[19]
Kang KN, Choi IU, Shin DW, Lee YH (2006) Cytokine and antibody responses of reactivated murine toxoplasmosis upon administration of dexamathasone. Korean J Parasitol 44: 209–219. doi: 10.3347/kjp.2006.44.3.209
[20]
Bartley PM, Wright S, Sales J, Chianini F, Buxton D, et al. (2006) Long-term passage of tachyzoites in tissue culture can attenuate virulence of Neospora caninum in vivo. Parasitology 133: 421–432. doi: 10.1017/s0031182006000539
[21]
Silva NM, Vieira JC, Carneiro CM, Tafuri WL (2009) Toxoplasma gondii: the role of IFN-gamma, TNFRp55 and iNOS in inflammatory changes during infection. Exp Parasitol 123: 65–72. doi: 10.1016/j.exppara.2009.05.011
[22]
Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23: 291–299.
[23]
Coutinho LB, Gomes AO, Araujo EC, Barenco PV, Santos JL, et al. (2012) The impaired pregnancy outcome in murine congenital toxoplasmosis is associated with a pro-inflammatory immune response, but not correlated with decidual inducible nitric oxide synthase expression. Int J Parasitol 42: 341–352. doi: 10.1016/j.ijpara.2012.01.006
[24]
Chaves-Borges FA, Souza MA, Silva DA, Kasper LH, Mineo JR (1999) Detection of Toxoplasma gondii soluble antigen, SAG-1(p30), antibody and immune complex in the cerebrospinal fluid of HIV positive or negative individuals. Rev Inst Med Trop Sao Paulo 41: 329–338. doi: 10.1590/s0036-46651999000600001
[25]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[26]
Pauly D, Dorner M, Zhang X, Hlinak A, Dorner B, et al. (2009) Monitoring of laying capacity, immunoglobulin Y concentration, and antibody titer development in chickens immunized with ricin and botulinum toxins over a two-year period. Poult Sci 88: 281–290. doi: 10.3382/ps.2008-00323
[27]
Shin JH, Nam SW, Kim JT, Yoon JB, Bang WG, et al. (2003) Identification of immunodominant Helicobacter pylori proteins with reactivity to H. pylori-specific egg-yolk immunoglobulin. J Med Microbiol 52: 217–222. doi: 10.1099/jmm.0.04978-0
[28]
Akita EM, Nakai S (1993) Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. coli strain. J Immunol Methods 160: 207–214. doi: 10.1016/0022-1759(93)90179-b
[29]
Nicoll S, Wright S, Maley SW, Burns S, Buxton D (1997) A mouse model of recrudescence of Toxoplasma gondii infection. J Med Microbiol 46: 263–266. doi: 10.1099/00222615-46-3-263
[30]
Silva RC, Silva AV, Langoni H (2010) Recrudescence of Toxoplasma gondii infection in chronically infected rats (Rattus norvegicus). Exp Parasitol 125: 409–412. doi: 10.1016/j.exppara.2010.04.003
[31]
Mahittikorn A, Wickert H, Sukthana Y (2010) Toxoplasma gondii: Simple duplex RT-PCR assay for detecting SAG1 and BAG1 genes during stage conversion in immunosuppressed mice. Exp Parasitol 124: 225–231. doi: 10.1016/j.exppara.2009.10.003
[32]
Djurkovic-Djakovic O, Milenkovic V (2001) Murine Model of Drug-induced Reactivation of Toxoplasma gondii. Acta Protozoologica 40: 99–106.
[33]
Silva NM, Manzan RM, Carneiro WP, Milanezi CM, Silva JS, et al. (2010) Toxoplasma gondii: the severity of toxoplasmic encephalitis in C57BL/6 mice is associated with increased ALCAM and VCAM-1 expression in the central nervous system and higher blood-brain barrier permeability. Exp Parasitol 126: 167–177. doi: 10.1016/j.exppara.2010.04.019
[34]
Holec-Gasior L (2013) Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis - the current status of studies. Clin Vaccine Immunol 20: 1343–1351. doi: 10.1128/cvi.00117-13
[35]
Gatkowska J, Hiszczynska-Sawicka E, Kur J, Holec L, Dlugonska H (2006) Toxoplasma gondii: an evaluation of diagnostic value of recombinant antigens in a murine model. Exp Parasitol 114: 220–227. doi: 10.1016/j.exppara.2006.03.011
[36]
Reichard U, Gross U (2007) Toxoplasma animal models and therapeutics. In: Weiss LM, Kim K, editors. Toxoplasma gondii: the model Apicomplexan: perspectives and methods. London: Elsevier. pp. 153–177.
[37]
Stevens TL, Bossie A, Sanders VM, Fernandez-Botran R, Coffman RL, et al. (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334: 255–258. doi: 10.1038/334255a0
[38]
Brujeni GN, Gharibi D (2012) Development of DNA-designed avian IgY antibodies for detection of Mycobacterium avium subsp. paratuberculosis heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal cattle. Appl Biochem Biotechnol 167: 14–23. doi: 10.1007/s12010-012-9648-1
[39]
Cai YC, Guo J, Chen SH, Tian LG, Steinmann P, et al. (2012) Chicken egg yolk antibodies (IgY) for detecting circulating antigens of Schistosoma japonicum. Parasitol Int 61: 385–390. doi: 10.1016/j.parint.2012.01.008
[40]
Lyons RE, Johnson AM (1995) Heat shock proteins of Toxoplasma gondii. Parasite Immunol 17: 353–359. doi: 10.1111/j.1365-3024.1995.tb00902.x
[41]
Lyons RE, Johnson AM (1998) Gene sequence and transcription differences in 70 kDa heat shock protein correlate with murine virulence of Toxoplasma gondii. Int J Parasitol 28: 1041–1051. doi: 10.1016/s0020-7519(98)00074-5
[42]
Djurkovic-Djakovic O, Djokic V, Vujanic M, Zivkovic T, Bobic B, et al. (2012) Kinetics of parasite burdens in blood and tissues during murine toxoplasmosis. Exp Parasitol 131: 372–376. doi: 10.1016/j.exppara.2012.05.006
[43]
Cruse JC, Lewis RE (2010) Antigen-antibody interactions. In: Cruse JC, Lewis RE, editors. Atlas of Immunology. Boca Raton: CRC Press. pp. 285–306.
[44]
van Knapen F, Panggabean SO, van Leusden J (1985) Demonstration of Toxoplasma antigen containing complexes in active toxoplasmosis. J Clin Microbiol 22: 645–650.
[45]
Lappin MR, Cayatte S, Powell CC, Gigliotti A, Cooper C, et al. (1993) Detection of Toxoplasma gondii antigen-containing immune complexes in the serum of cats. Am J Vet Res 54: 415–419.
[46]
Gazzinelli RT, Eltoum I, Wynn TA, Sher A (1993) Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 151: 3672–3681.
[47]
Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A (1992) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149: 175–180.
[48]
Takashima Y, Suzuki K, Xuan X, Nishikawa Y, Unno A, et al. (2008) Detection of the initial site of Toxoplasma gondii reactivation in brain tissue. Int J Parasitol 38: 601–607. doi: 10.1016/j.ijpara.2007.09.017
[49]
Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6: 318–328. doi: 10.1038/nri1810
[50]
Sathasivam S (2008) Steroids and immunosuppressant drugs in myasthenia gravis. Nat Clin Pract Neurol 4: 317–327. doi: 10.1038/ncpneuro0810
[51]
Everson GT, Trotter JF, Kugelmas M, Forman L (2003) Immunosuppression in liver transplantation. Minerva Chir 58: 725–740.
[52]
Wananukul S, Chatproedprai S, Chunharas A, Limpongsanuruk W, Singalavanija S, et al. (2013) Randomized, double-blind, split-side, comparison study of moisturizer containing licochalcone A and 1% hydrocortisone in the treatment of childhood atopic dermatitis. J Med Assoc Thai 96: 1135–1142. doi: 10.1111/j.1468-3083.2011.04187.x
[53]
de Medeiros BC, de Medeiros CR, Werner B, Loddo G, Pasquini R, et al. (2001) Disseminated toxoplasmosis after bone marrow transplantation: report of 9 cases. Transpl Infect Dis 3: 24–28. doi: 10.1034/j.1399-3062.2001.003001024.x
[54]
Liu T, Daniels CK, Cao S (2012) Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 136: 354–374. doi: 10.1016/j.pharmthera.2012.08.014
[55]
Shonhai A (2010) Plasmodial heat shock proteins: targets for chemotherapy. FEMS Immunol Med Microbiol 58: 61–74. doi: 10.1111/j.1574-695x.2009.00639.x