Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.
References
[1]
Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362: 329–44. doi: 10.1056/nejmra0909142
[2]
Chopra K, Misra S, Kuhad A (2011) Neurobiological aspects of Alzheimer's disease. Expert Opin Ther Targets 15: 535–555. doi: 10.1517/14728222.2011.557363
[3]
Quintanilla RA, Orellana JA, von Bernhardi R (2012) Understanding risk factors for Alzheimer's disease: interplay of neuroinflammation, connexin-based communication and oxidative stress. Arch Med Res 43: 632–644. doi: 10.1016/j.arcmed.2012.10.016
Holmes C, Butchart J (2011) Systemic inflammation and Alzheimer's disease. Biochem Soc Trans 39: 898–901. doi: 10.1042/bst0390898
[8]
Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2013) Neuroinflammation: The role and consequences. Neurosci Res doi: 10.1016/j.neures.2013.10.004.
[9]
Holmes C (2013) Review: systemic inflammation and Alzheimer's disease. Neuropathol Appl Neurobiol 39: 51–68. doi: 10.1111/j.1365-2990.2012.01307.x
[10]
Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6: 193–201. doi: 10.1038/nrneurol.2010.17
[11]
McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19: 355–361.
[12]
Popescu BO, Toescu EC, Popescu LM, Bajenaru O, Muresanu DF, et al. (2009) Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 283: 99–106. doi: 10.1016/j.jns.2009.02.321
[13]
Leoni V, Masterman T, Patel P, Meaney S, Diczfalusy U, et al. (2003) Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers. J Lipid Res 44: 793–799. doi: 10.1194/jlr.m200434-jlr200
[14]
von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12: 215–232. doi: 10.1007/bf03033906
Bhamra MS, Ashton NJ (2012) Finding a pathological diagnosis for Alzheimer's disease: are inflammatory molecules the answer? Electrophoresis 33: 3598–3607. doi: 10.1002/elps.201200161
[18]
Azizi G, Mirshafiey A (2012) The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis, Immunopharmacol Immunotoxicol. 34: 881–895. doi: 10.3109/08923973.2012.705292
[19]
Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9: 174–191. doi: 10.2174/187152710791012053
[20]
Weitz TM, Town T (2012) Microglia in Alzheimer's Disease: It's All About Context. Int J Alzheimers Dis 2012: 314185. doi: 10.1155/2012/314185
[21]
Johnston H, Boutin H, Allan SM (2011) Assessing the contribution of inflammation in models of Alzheimer's disease. Biochem Soc Trans 39: 886–890. doi: 10.1042/bst0390886
[22]
Bj?rkhem I, Cedazo-Minguez A, Leoni V, Meaney S (2009) Oxysterols and neurodegenerative diseases. Mol Aspects Med 30: 171–179. doi: 10.1016/j.mam.2009.02.001
[23]
Gamba P, Testa G, Sottero B, Gargiulo S, Poli G, et al. (2012) The link between altered cholesterol metabolism and Alzheimer's disease. Ann N Y Acad Sci 1259: 54–64. doi: 10.1111/j.1749-6632.2012.06513.x
[24]
Bj?rkhem I, Heverin M, Leoni V, Meaney S, Diczfalusy U (2006) Oxysterols and Alzheimer's disease. Acta Neurol Scand Suppl 185: 43–49.
[25]
Nelson TJ, Alkon DL (2005) Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 280: 7377–7387. doi: 10.1074/jbc.m409071200
Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164: 515–524. doi: 10.1016/j.chemphyslip.2011.04.002
[28]
Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer's disease: the cholesterol connection. Nat Neurosci 6: 345–351. doi: 10.1038/nn0403-345
[29]
Faria A, Pestana D, Teixeira D, Azevedo J, De Freitas V, et al. (2010) Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cell Mol Biol Lett 15: 234–241. doi: 10.2478/s11658-010-0006-4
[30]
Vafeiadou K, Vauzour D, Spencer JP (2007) Neuroinflammation and its modulation by flavonoids. Endocr Metab Immune Disord Drug Targets 7: 211–224. doi: 10.2174/187153007781662521
[31]
Ho L, Pasinetti GM (2010) Polyphenolic compounds for treating neurodegenerative disorders involving protein misfolding. Expert Rev Proteomics 7: 579–589. doi: 10.1586/epr.10.69
[32]
Mandel SA, Weinreb O, Amit T, Youdim MB (2012) Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed) 4: 581–598.
[33]
Jayasena T, Poljak A, Smythe G, Braidy N, Münch G, et al. (2013) The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease. Ageing Res Rev 12: 867–883. doi: 10.1016/j.arr.2013.06.003
[34]
Bhullar KS, Rupasinghe HP (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013: 891748. doi: 10.1155/2013/891748
[35]
Dajas F, Andrés AC, Florencia A, Carolina E, Felicia RM (2013) Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent Nerv Syst Agents Med Chem 13: 30–35. doi: 10.2174/1871524911313010005
[36]
Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11: 733–740. doi: 10.1097/mco.0b013e32831394b8
[37]
Bureau G, Longpré F, Martinoli MG (2008) Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 86: 403–410. doi: 10.1002/jnr.21503
[38]
Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA (2009) Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer's disease. J Nutr Biochem 20: 269–275. doi: 10.1016/j.jnutbio.2008.03.002
[39]
Leonarduzzi G, Testa G, Sottero B, Gamba P, Poli G (2010) Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr Med Chem 17: 74–95. doi: 10.2174/092986710789957760
[40]
Scheepens A, Tan K, Paxton JW (2010) Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr 5: 75–87. doi: 10.1007/s12263-009-0148-z
[41]
Sahni JK, Doggui S, Ali J, Baboota S, Dao L, et al. (2011) Neurotherapeutic applications of nanoparticles in Alzheimer's disease. J Control Release 152: 208–231. doi: 10.1016/j.jconrel.2010.11.033
[42]
Doggui S, Dao L, Ramassamy C (2012) Potential of drug-loaded nanoparticles for Alzheimer's disease: diagnosis, prevention and treatment. Ther Deliv 3: 1025–1027. doi: 10.4155/tde.12.84
[43]
Ghosh A, Mandal AK, Sarkar S, Panda S, Das N (2009) Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 84: 75–80. doi: 10.1016/j.lfs.2008.11.001
[44]
Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63: 342–351. doi: 10.1111/j.2042-7158.2010.01225.x
[45]
Prunet C, Montange T, Véjux A, Laubriet A, Rohmer JF, et al. (2006) Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A 69: 359–373. doi: 10.1002/cyto.a.20272
[46]
Morello F, Saglio E, Noghero A, Schiavone D, Williams TA, et al. (2009) LXR-activating oxysterols induce the expression of inflammatory markers in endothelial cells through LXR-independent mechanisms. Atherosclerosis 207: 38–44. doi: 10.1016/j.atherosclerosis.2009.04.001
[47]
Mascia C, Maina M, Chiarpotto E, Leonarduzzi G, Poli G, et al. (2010) Proinflammatory effect of cholesterol and its oxidation products on CaCo-2 human enterocyte-like cells: effective protection by epigallocatechin-3-gallate. Free Radic Biol Med 49: 2049–2057. doi: 10.1016/j.freeradbiomed.2010.09.033
[48]
Dugas B, Charbonnier S, Baarine M, Ragot K, Delmas D, et al. (2010) Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol. Eur J Nutr 49: 435–446. doi: 10.1007/s00394-010-0102-2
[49]
Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G (2009) Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem 16: 685–705. doi: 10.2174/092986709787458353
[50]
Vejux A, Lizard G (2009) Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol Aspects Med 30: 153–170. doi: 10.1016/j.mam.2009.02.006
[51]
Cavalli R, Trotta F, Trotta M, Pastero L, Aquilano D (2007) Effect of alkylcarbonate of γ-cyclodextrins with different chain lengths on drug complexation and release characteristics. Int J Pharm 339: 197–204. doi: 10.1016/j.ijpharm.2007.03.001
Cavalli R, Donalisio M, Civra A, Ferruti P, Ranucci E, et al. (2009) Enhanced antiviral activity of acyclovir loaded into β- cyclodextrin-poly(4-acryloylmorpholine)c?onjugatenanoparticles. J Control Release 137: 116–122. doi: 10.1016/j.jconrel.2009.04.004
[54]
Hunter RJ (1981) Zeta potential in colloid science. Principles and applications. Academic Press London.
[55]
Livak JK, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[56]
Drouin-Ouellet J, Cicchetti F (2012) Inflammation and neurodegeneration: the story ‘retolled’. Trends Pharmacol Sci 33: 542–551. doi: 10.1016/j.tips.2012.07.002
[57]
Hein AM, O'Banion MK (2009) Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 40: 15–32. doi: 10.1007/s12035-009-8066-z
[58]
Gamba P, Leonarduzzi G, Tamagno E, Guglielmotto M, Testa G, et al. (2011) Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer's disease: three partners in crime. Aging Cell 10: 403–417. doi: 10.1111/j.1474-9726.2011.00681.x
[59]
Testa G, Gamba P, Di Scipio F, Sprio AE, Salamone P, et al. (2012) Potentiation of amyloid-β peptide neurotoxicity in human dental-pulp neuron-like cells by the membrane lipid peroxidation product 4-hydroxynonenal. Free Radic Biol Med 53: 1708–1717. doi: 10.1016/j.freeradbiomed.2012.08.581
[60]
Gamba P, Guglielmotto M, Testa G, Monteleone D, Zerbinati C, et al.. (2014) Up-regulation of b-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine. Aging Cell, doi: 10.1111/acel.12206.
[61]
K?lsch H, Lütjohann D, Tulke A, Bj?rkhem I, Rao ML (1999) The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res 818: 171–175. doi: 10.1016/s0006-8993(98)01274-8
[62]
K?lsch H, Ludwig M, Lütjohann D, Rao ML (2001) Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17beta. J Neural Transm 108: 475–488. doi: 10.1007/s007020170068
[63]
K?lsch H, Ludwig M, Lütjohann D, Prange W, Rao ML (2000) 7alpha-Hydroperoxycholesterol causes CNS neuronal cell death. Neurochem Int 36: 507–512. doi: 10.1016/s0197-0186(99)00157-6
[64]
Ong WY, Kim JH, He X, Chen P, Farooqui AA, et al. (2010) Changes in brain cholesterol metabolome after excitotoxicity. Mol Neurobiol 41: 299–313. doi: 10.1007/s12035-010-8099-3
[65]
Ferrera P, Mercado-Gómez O, Silva-Aguilar M, Valverde M, Arias C (2008) Cholesterol potentiates beta-amyloid-induced toxicity in human neuroblastoma cells: involvement of oxidative stress. Neurochem Res 33: 1509–1517. doi: 10.1007/s11064-008-9623-y
[66]
Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116: 607–614. doi: 10.1172/jci27883
[67]
Panzenboeck U, Kratzer I, Sovic A, Wintersperger A, Bernhart E, et al. (2006) Regulatory effects of synthetic liver X receptor- and peroxisome-proliferator activated receptor agonists on sterol transport pathways in polarized cerebrovascular endothelial cells. Int J Biochem Cell Biol 38: 1314–1329. doi: 10.1016/j.biocel.2006.01.013
[68]
Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AH, et al. (2006) 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281: 12799–12808. doi: 10.1074/jbc.m601019200
[69]
Kim WS, Chan SL, Hill AF, Guillemin GJ, Garner B (2009) Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons. J Alzheimers Dis 16: 121–131.
[70]
Saint-Pol J, Candela P, Boucau MC, Fenart L, Gosselet F (2013) Oxysterols decrease apical-to-basolateral transport of Aβ peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Res 1517: 1–15. doi: 10.1016/j.brainres.2013.04.008
[71]
Saint-Pol J, Vandenhaute E, Boucau MC, Candela P, Dehouck L, et al. (2014) Brain pericytes ABCA1 expression mediates cholesterol efflux but not cellular amyloid-β peptide accumulation. J Alzheimers Dis 30: 489–503.
[72]
Terwel D, Steffensen KR, Verghese PB, Kummer MP, Gustafsson J?, et al. (2011) Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J Neurosci 31: 7049–7059. doi: 10.1523/jneurosci.6546-10.2011
[73]
Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, et al. (2002) Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci USA 15: 13878–13883. doi: 10.1073/pnas.172510899
[74]
Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, et al. (2007) The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol Cell Neurosci 34: 621–628. doi: 10.1016/j.mcn.2007.01.011
[75]
Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, et al. (2007) Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc Natl Acad Sci USA 104: 10601–10606. doi: 10.1073/pnas.0701096104
[76]
Cao G, Bales KR, DeMattos RB, Paul SM (2007) Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: relevance to Alzheimer's disease therapeutics. Curr Alzheimer Res 4: 179–184. doi: 10.2174/156720507780362173
Sodhi RK, Singh N (2013) Liver X receptors: emerging therapeutic targets for Alzheimer's disease. Pharmacol Res 72: 45–51. doi: 10.1016/j.phrs.2013.03.008
[79]
Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G (2001) Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 22: 147–184. doi: 10.1006/frne.2001.0214
[80]
Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C (2010) The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 224: 93–100. doi: 10.1016/j.jneuroim.2010.05.010
[81]
Haanstra KG, Hofman SO, Lopes Estêv?o DM, Blezer EL, Bauer J, et al. (2013) Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. J Immunol 190: 1961–1973. doi: 10.4049/jimmunol.1202490
[82]
Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158: 983–994. doi: 10.1016/j.neuroscience.2008.06.025
[83]
Dafnis I, Tzinia AK, Tsilibary EC, Zannis VI, Chroni A (2012) An apolipoprotein E4 fragment affects matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 1 and cytokine levels in brain cell lines. Neuroscience 210: 21–32. doi: 10.1016/j.neuroscience.2012.03.013
[84]
Park L, Wang G, Zhou P, Zhou J, Pitstick R, et al. (2011) Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc Natl Acad Sci USA 108: 5063–5068. doi: 10.1073/pnas.1015413108
[85]
Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, et al. (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11: 155–161. doi: 10.1038/ni.1836
[86]
Chávez-Sánchez L, Madrid-Miller A, Chávez-Rueda K, Legorreta-Haquet MV, Tesoro-Cruz E, et al. (2010) Activation of TLR2 and TLR4 by minimally modified low-density lipoprotein in human macrophages and monocytes triggers the inflammatory response. Hum Immunol 71: 737–744. doi: 10.1016/j.humimm.2010.05.005
[87]
Aye IL, Waddell BJ, Mark PJ, Keelan JA (2012) Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF-κB. Mol Hum Reprod 18: 341–353. doi: 10.1093/molehr/gas001