[1] | Ruttenberg KC (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr 37: 1460–1482. doi: 10.4319/lo.1992.37.7.1460
|
[2] | Ingall ED, Bustin RM, Van Cappellen P (1993) Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim Cosmochim Acta 57: 303–316. doi: 10.1016/0016-7037(93)90433-w
|
[3] | Anderson LD, Delaney ML, Faul KL (2001) Carbon to phosphorus ratios in sediments: Implications for nutrient cycling. Global Biogeochem Cy 15: 65–79. doi: 10.1029/2000gb001270
|
[4] | Ruttenberg KC, Holland HD, Turekian KK (2003) The global phosphorus cycle. In: W. H Schlesinger, editor. Treatise on Geochemistry. Oxford: Pergamon. pp. 585–643.
|
[5] | Lukkari K, Leivuori M, Hartikainen H (2007) Fractionation of sediment phosphorus revisited: II. Changes in phosphorus fractions during sampling and storing in the presence or absence of oxygen. Limnol Oceanogr: Meth 5: 445–456. doi: 10.4319/lom.2007.5.445
|
[6] | Kraal P, Slomp CP, Forster A, Kuypers MMM, Sluijs A (2009) Pyrite oxidation during sample storage determines phosphorus fractionation in carbonate-poor anoxic sediments. Geochim Cosmochim Acta 73: 3277–3290. doi: 10.1016/j.gca.2009.02.026
|
[7] | Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: J. A Kittrick, D. S Fanning and L. R Hosner, editors. Acid Sulfate Weathering. Soil Science Society of America. pp. 37–56.
|
[8] | Moses CO, Kirk Nordstrom D, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51: 1561–1571. doi: 10.1016/0016-7037(87)90337-1
|
[9] | Luther GW III (1987) Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochim Cosmochim Acta 51: 3193–3199. doi: 10.1016/0016-7037(87)90127-x
|
[10] | Evangelou VP, Zhang YL (1995) A review: Pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Env Sci 25: 141–199. doi: 10.1080/10643389509388477
|
[11] | Chi R, Xiao C, Gao H (2006) Bioleaching of phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans. Miner Eng 19: 979–981. doi: 10.1016/j.mineng.2005.10.003
|
[12] | Mort HP, Slomp CP, Gustafsson BG, Andersen TJ (2010) Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochim Cosmochim Acta 74: 1350–1362. doi: 10.1016/j.gca.2009.11.016
|
[13] | Gustafsson BG, Medina MR (2011) Validation data set compiled from Baltic Environmental Database, Version 2. Stockholm University Baltic Nest Institute Technical Report pp. 25.
|
[14] | Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288: 575–603. doi: 10.2475/ajs.288.6.575
|
[15] | Slomp CP, Epping EHG, Helder W, Van Raaphorst W (1996) A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J Mar Res 54: 1179–1205. doi: 10.1357/0022240963213745
|
[16] | Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis. Fish. Res. Board Canada.
|
[17] | Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental-margin environments. Geochim Cosmochim Acta 57: 991–1007. doi: 10.1016/0016-7037(93)90035-u
|
[18] | Bray JT, Bricker OP, Troup BN (1973) Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1364. doi: 10.1126/science.180.4093.1362
|
[19] | Moodley L, Middelburg JJ, Herman PMJ, Soetaert K, de Lange GJ (2005) Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon-rich deposits. Geology 33: 889–892. doi: 10.1130/g21731.1
|
[20] | Ingall E, Jahnke R (1994) Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim Cosmochim Acta 58: 2571–2575. doi: 10.1016/0016-7037(94)90033-7
|
[21] | Algeo TJ, Ingall E (2007) Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr Palaeocl 256: 130–155. doi: 10.1016/j.palaeo.2007.02.029
|
[22] | Kraal P, Slomp CP, de Lange GJ (2010) Sedimentary organic carbon to phosphorus ratios as a redox proxy in Quaternary records from the Mediterranean. Chem Geol 277: 167–177. doi: 10.1016/j.chemgeo.2010.08.003
|
[23] | Jilbert T, Slomp CP, Gustafsson BG, Boer W (2011) Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles. Biogeosciences 8: 1699–1720. doi: 10.5194/bg-8-1699-2011
|
[24] | Jilbert T, Slomp CP (2013) Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochim Cosmochim Acta 107: 155–169. doi: 10.1016/j.gca.2013.01.005
|
[25] | Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic Sea. ICES Journal of Marine Science: Journal du Conseil 60: 177–186. doi: 10.1016/s1054-3139(02)00280-1
|
[26] | Klais R, Tamminen T, Kremp A, Spilling K, Olli K (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6: e21567. doi: 10.1371/journal.pone.0021567
|