全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Whole Blood Gene Expression and Atrial Fibrillation: The Framingham Heart Study

DOI: 10.1371/journal.pone.0096794

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Atrial fibrillation (AF) involves substantial electrophysiological, structural and contractile remodeling. We hypothesize that characterizing gene expression might uncover important pathways related to AF. Methods and Results We performed genome-wide whole blood transcriptomic profiling (Affymetrix Human Exon 1.0 ST Array) of 2446 participants (mean age 66±9 years, 55% women) from the Offspring cohort of Framingham Heart Study. The study included 177 participants with prevalent AF, 143 with incident AF during up to 7 years follow up, and 2126 participants with no AF. We identified seven genes statistically significantly up-regulated with prevalent AF. The most significant gene, PBX1 (P = 2.8×10?7), plays an important role in cardiovascular development. We integrated differential gene expression with gene-gene interaction information to identify several signaling pathways possibly involved in AF-related transcriptional regulation. We did not detect any statistically significant transcriptomic associations with incident AF. Conclusion We examined associations of gene expression with AF in a large community-based cohort. Our study revealed several genes and signaling pathways that are potentially involved in AF-related transcriptional regulation.

References

[1]  Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, et al. (2006) Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114: 119–125. doi: 10.1161/circulationaha.105.595140
[2]  Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, et al. (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285: 2370–2375. doi: 10.1001/jama.285.18.2370
[3]  Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54: 230–246. doi: 10.1016/s0008-6363(02)00258-4
[4]  Morillo CA, Klein GJ, Jones DL, Guiraudon CM (1995) Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91: 1588–1595. doi: 10.1161/01.cir.91.5.1588
[5]  Darbar D, Motsinger AA, Ritchie MD, Gainer JV, Roden DM (2007) Polymorphism modulates symptomatic response to antiarrhythmic drug therapy in patients with lone atrial fibrillation. Heart Rhythm 4: 743–749. doi: 10.1016/j.hrthm.2007.02.006
[6]  Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, et al. (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res 89: E32–38. doi: 10.1161/hh1801.097644
[7]  Dernellis J, Panaretou M (2001) C-reactive protein and paroxysmal atrial fibrillation: evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation. Acta Cardiol 56: 375–380. doi: 10.2143/ac.56.6.2005701
[8]  Fox CS, Parise H, D’Agostino RB Sr, Lloyd-Jones DM, Vasan RS, et al. (2004) Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 291: 2851–2855. doi: 10.1001/jama.291.23.2851
[9]  Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, et al. (2006) Familial aggregation of atrial fibrillation in Iceland. Eur Heart J 27: 708–712. doi: 10.1093/eurheartj/ehi727
[10]  Ellinor PT, Yoerger DM, Ruskin JN, MacRae CA (2005) Familial aggregation in lone atrial fibrillation. Hum Genet 118: 179–184. doi: 10.1007/s00439-005-0034-8
[11]  Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh BJ, et al. (2003) Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol 41: 2185–2192. doi: 10.1016/s0735-1097(03)00465-0
[12]  Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, et al. (2007) Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448: 353–357. doi: 10.1038/nature06007
[13]  Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, et al. (2009) Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 41: 879–881. doi: 10.1038/ng.416
[14]  Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, et al. (2012) Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 44: 670–675.
[15]  Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, et al. (2008) Genetics of gene expression and its effect on disease. Nature 452: 423–428. doi: 10.1038/nature06758
[16]  Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, et al. (2007) A genome-wide association study of global gene expression. Nat Genet 39: 1202–1207. doi: 10.1038/ng2109
[17]  Cervero J, Segura V, Macias A, Gavira JJ, Montes R, et al. (2012) Atrial fibrillation in pigs induces left atrial endocardial transcriptional remodelling. Thromb Haemost 108: 742–749. doi: 10.1160/th12-05-0285
[18]  Thijssen VL, van der Velden HM, van Ankeren EP, Ausma J, Allessie MA, et al. (2002) Analysis of altered gene expression during sustained atrial fibrillation in the goat. Cardiovasc Res 54: 427–437.
[19]  Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, et al. (2005) Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res 96: 1022–1029. doi: 10.1161/01.res.0000165480.82737.33
[20]  Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415: 219–226. doi: 10.1038/415219a
[21]  Van Gelder IC, Brundel BJ, Henning RH, Tuinenburg AE, Tieleman RG, et al. (1999) Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation. J Cardiovasc Electrophysiol 10: 552–560. doi: 10.1111/j.1540-8167.1999.tb00712.x
[22]  Brundel BJ, van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, et al. (1999) Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res 42: 443–454. doi: 10.1016/s0008-6363(99)00045-0
[23]  Goette A, Staack T, Rocken C, Arndt M, Geller JC, et al. (2000) Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 35: 1669–1677. doi: 10.1016/s0735-1097(00)00611-2
[24]  Gao M, Wang J, Wang Z, Zhang Y, Sun H, et al. (2013) An altered expression of genes involved in the regulation of ion channels in atrial myocytes is correlated with the risk of atrial fibrillation in patients with heart failure. Exp Ther Med 5: 1239–1243. doi: 10.3892/etm.2013.949
[25]  Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, et al. (2005) Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112: 471–481. doi: 10.1161/circulationaha.104.506857
[26]  Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110: 281–290.
[27]  Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22: 983–988. doi: 10.1161/01.str.22.8.983
[28]  Piccini JP, Hammill BG, Sinner MF, Jensen PN, Hernandez AF, et al. (2012) Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993–2007. Circ Cardiovasc Qual Outcomes 5: 85–93. doi: 10.1161/circoutcomes.111.962688
[29]  Joehanes R, Ying S, Huan T, Johnson AD, Raghavachari N, et al. (2013) Gene expression signatures of coronary heart disease. Arterioscler Thromb Vasc Biol 33: 1418–1426. doi: 10.1161/atvbaha.112.301169
[30]  Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264. doi: 10.1093/biostatistics/4.2.249
[31]  Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, et al. (2013) Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc 2: e000102.
[32]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 57: 289–300.
[33]  Jia P, Zheng S, Long J, Zheng W, Zhao Z (2011) dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics 27: 95–102. doi: 10.1093/bioinformatics/btq615
[34]  Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, et al. (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res 40: D862–865. doi: 10.1093/nar/gkr967
[35]  Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1S233–240. doi: 10.1093/bioinformatics/18.suppl_1.s233
[36]  Chen Y, Zhu J, Lum PY, Yang X, Pinto S, et al. (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452: 429–435. doi: 10.1038/nature06757
[37]  Heerdt PM, Kant R, Hu Z, Kanda VA, Christini DJ, et al. (2012) Transcriptomic analysis reveals atrial KCNE1 down-regulation following lung lobectomy. J Mol Cell Cardiol 53: 350–353. doi: 10.1016/j.yjmcc.2012.05.010
[38]  Chang CP, Stankunas K, Shang C, Kao SC, Twu KY, et al. (2008) Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development 135: 3577–3586. doi: 10.1242/dev.022350
[39]  Stankunas K, Shang C, Twu KY, Kao SC, Jenkins NA, et al. (2008) Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ Res 103: 702–709. doi: 10.1161/circresaha.108.175489
[40]  Albritton LM, Bowcock AM, Eddy RL, Morton CC, Tseng L, et al. (1992) The human cationic amino acid transporter (ATRC1): physical and genetic mapping to 13q12-q14. Genomics 12: 430–434. doi: 10.1016/0888-7543(92)90431-q
[41]  Yang Z, Venardos K, Jones E, Morris BJ, Chin-Dusting J, et al. (2007) Identification of a novel polymorphism in the 3′UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction. Circulation 115: 1269–1274. doi: 10.1161/circulationaha.106.665836
[42]  Yang Z, Kaye DM (2009) Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Hum Mutat 30: 328–333. doi: 10.1002/humu.20891
[43]  Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, et al. (2001) C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104: 2886–2891. doi: 10.1161/hc4901.101760
[44]  Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59: 47–53. doi: 10.1016/s0006-2952(99)00292-0
[45]  Calvert JW, Cahill J, Yamaguchi-Okada M, Zhang JH (2006) Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J Appl Physiol 101: 853–865. doi: 10.1152/japplphysiol.00268.2006
[46]  Kido M, Du L, Sullivan CC, Li X, Deutsch R, et al. (2005) Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46: 2116–2124. doi: 10.1016/j.jacc.2005.08.045
[47]  Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, et al. (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659–669. doi: 10.1182/blood-2004-07-2958
[48]  Schulze-Topphoff U, Casazza S, Varrin-Doyer M, Michel K, Sobel RA, et al. (2013) Tob1 plays a critical role in the activation of encephalitogenic T cells in CNS autoimmunity. J Exp Med 210: 1301–1309. doi: 10.1084/jem.20121611
[49]  Bjornstad JL, Skrbic B, Marstein HS, Hasic A, Sjaastad I, et al. (2012) Inhibition of SMAD2 phosphorylation preserves cardiac function during pressure overload. Cardiovasc Res 93: 100–110. doi: 10.1093/cvr/cvr294
[50]  Hyun C, Lavulo L (2006) Congenital heart diseases in small animals: part I. Genetic pathways and potential candidate genes. Vet J 171: 245–255. doi: 10.1016/j.tvjl.2005.02.008
[51]  Lin H, Dolmatova EV, Morley MP, Lunetta KL, McManus DD, et al. (2013, 10.1016/j.hrthm.2013.10.051) Gene Expression and Genetic Variation in Human Atria. Heart Rhythm.
[52]  Adam O, Lavall D, Theobald K, Hohl M, Grube M, et al. (2010) Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol 55: 469–480. doi: 10.1016/j.jacc.2009.08.064
[53]  Matkovich SJ, Zhang Y, Van Booven DJ, Dorn GW 2nd (2010) Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq. Circ Res 106: 1459–1467. doi: 10.1161/circresaha.110.217513
[54]  Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, et al. (2007) Population genomics of human gene expression. Nat Genet 39: 1217–1224. doi: 10.1038/ng2142

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133