全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Calponin-Like Chd64 Is Partly Disordered

DOI: 10.1371/journal.pone.0096809

Full-Text   Cite this paper   Add to My Lib

Abstract:

20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to regulate insect development. Recently, two proteins, a calponin-like Chd64 and immunophilin FKBP39 have been found to play a pivotal role in the cross-talk between 20E and JH, although the molecular basis of interaction remains unknown. The aim of this work was to identify the structural features that would provide understanding of the role of Chd64 in multiple and dynamic complex that cross-links the signaling pathways. Here, we demonstrate the results of in silico and in vitro analyses of the structural organization of Chd64 from Drosophila melanogaster and its homologue from Tribolium castaneum. Computational analysis predicted the existence of disordered regions on the termini of both proteins, while the central region appeared to be globular, probably corresponding to the calponin homology (CH) domain. In vitro analyses of the hydrodynamic properties of the proteins from analytical size-exclusion chromatography and analytical ultracentrifugation revealed that DmChd64 and TcChd64 had an asymmetrical, elongated shape, which was further confirmed by small angle X-ray scattering (SAXS). The Kratky plot indicated disorderness in both Chd64 proteins, which could possibly be on the protein termini and which would give rise to specific hydrodynamic properties. Disordered tails are often involved in diverse interactions. Therefore, it is highly possible that there are intrinsically disordered regions (IDRs) on both termini of the Chd64 proteins that serve as platforms for multiple interaction with various partners and constitute the foundation for their regulatory function.

References

[1]  Riddiford LM (1994) Cellular and molecular actions of juvenile hormone. I. general considerations and premetamorphic actions. Advances in insect physiolog 24.
[2]  Riddiford LM, Cherbas P, Truman JW (2000) Ecdysone receptors and their biological actions. Vitam Horm 60: 1–73. doi: 10.1016/s0083-6729(00)60016-x
[3]  Li Y, Zhang Z, Robinson GE, Palli SR (2007) Identification and characterization of a juvenile hormone response element and its binding proteins. J Biol Chem 282: 37605–37617. doi: 10.1074/jbc.m704595200
[4]  Liu PC, Wang JX, Song QS, Zhao XF (2011) The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS One 6: e19776. doi: 10.1371/journal.pone.0019776
[5]  Ba?uelos S, Saraste M, Carugo KD (1998) Structural comparisons of calponin homology domains: Implications for actin binding. Structure 6: 1419–1431. doi: 10.1016/s0969-2126(98)00141-5
[6]  Gimona M, Djinovic-Carugo K, Kranewitter WJ, Winder SJ (2002) Functional plasticity of CH domains. FEBS Lett 513: 98–106. doi: 10.1016/s0014-5793(01)03240-9
[7]  Hartwig JH (1994) Actin-binding proteins 1: Spectrin superfamily. Protein Profile 1: 706–778.
[8]  McGough A (1998) F-actin-binding proteins. Curr Opin Struct Biol 8: 166–176. doi: 10.1016/s0959-440x(98)80034-1
[9]  Fu Q, Liu PC, Wang JX, Song QS, Zhao XF (2009) Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera. BMC Genomics 10: 600–2164–10–600. doi: 10.1186/1471-2164-10-600
[10]  Gimona M, Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111 (Pt 13): 1813–1821.
[11]  Uversky VN (2002) Natively unfolded proteins: A point where biology waits for physics. Protein Sci 11: 739–756. doi: 10.1110/ps.4210102
[12]  Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, et al. (2001) Intrinsically disordered protein. J Mol Graph Model 19: 26–59.
[13]  Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. the roles of intrinsic disorder in protein interaction networks. FEBS J 272: 5129–5148. doi: 10.1111/j.1742-4658.2005.04948.x
[14]  Kostyukovsky M, Chen B, Atsmi S, Shaaya E (2000) Biological activity of two juvenoids and two ecdysteroids against three stored product insects. Insect Biochem Mol Biol 30: 891–897. doi: 10.1016/s0965-1748(00)00063-1
[15]  Ishaaya I, Yablonski S (1976) Induction of prolonged larval feeding stage by juvenile hormone analogues in Tribolium castaneum. Phytoparasitica 4: 9–18. doi: 10.1007/bf02981074
[16]  Schroder R, Beermann A, Wittkopp N, Lutz R (2008) From development to biodiversity–Tribolium castaneum, an insect model organism for short germband development. Dev Genes Evol 218: 119–126. doi: 10.1007/s00427-008-0214-3
[17]  Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182: 319–326. doi: 10.1016/0003-2697(89)90602-7
[18]  Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. doi: 10.1038/227680a0
[19]  Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617. doi: 10.1021/bi00789a030
[20]  Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751: 119–139. doi: 10.1016/j.bbapap.2005.06.005
[21]  Sreerama N, Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383: 318–351. doi: 10.1016/s0076-6879(04)83013-1
[22]  Begg GE, Harper SL, Speicher DW (2001) Characterizing recombinant proteins using HPLC gel filtration and mass spectrometry. Curr Protoc Protein Sci Chapter 7: Unit 7.10.
[23]  de Haen C (1987) Molecular weight standards for calibration of gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis: Ferritin and apoferritin. Anal Biochem 166: 235–245. doi: 10.1016/0003-2697(87)90570-7
[24]  Uversky VN (1993) Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32: 13288–13298. doi: 10.1021/bi00211a042
[25]  Andrews P (1970) Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods Biochem Anal 18: 1–53. doi: 10.1002/9780470110362.ch1
[26]  Brown PH, Schuck P (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 90: 4651–4661. doi: 10.1529/biophysj.106.081372
[27]  Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78: 1606–1619. doi: 10.1016/s0006-3495(00)76713-0
[28]  Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Analyticall ultracentrifugation in biochemistry and polymer science. In: Harding S, Rowe A, editors. Biochemistry and Polymer Science. 90–125.
[29]  Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, et al. (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature Methods 6: 606–612. doi: 10.1038/nmeth.1353
[30]  Konarev PV, Volkov VV, Sokolova AV, Koch HJ, Svergun DI (2003) PRIMUS: A windows PC-based system for small- angle scattering data analysis. Journal of Applied Crystallography 36: 1277–1282. doi: 10.1107/s0021889803012779
[31]  Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography 25: 495–503. doi: 10.1107/s0021889892001663
[32]  Glatter O, Kratky O (1982) Small-angle X-ray scattering. London: Academic Press.
[33]  Svergun DI, Koch M (2003) Small - angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics 66: 1735–1782. doi: 10.1088/0034-4885/66/10/r05
[34]  Mertens HD, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172: 128–141. doi: 10.1016/j.jsb.2010.06.012
[35]  Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70–77. doi: 10.1016/0003-9861(59)90090-6
[36]  Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of ellman’s reagent. Methods Enzymol 91: 49–60. doi: 10.1016/s0076-6879(83)91010-8
[37]  Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, et al. (2001) Sequence complexity of disordered protein. Proteins 42: 38–48. doi: 10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3
[38]  Romero P, Obradovic Z, Dunker AK (1997) Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform Ser Workshop Genome Inform 8: 110–124.
[39]  Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10: 30–40.
[40]  Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: A tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8: 211. doi: 10.1186/1471-2105-8-211
[41]  Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, et al. (2007) DisProt: The database of disordered proteins. Nucleic Acids Res 35: D786–93. doi: 10.1093/nar/gkl893
[42]  Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 3433–3434. doi: 10.1093/bioinformatics/bti541
[43]  Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347: 827–839. doi: 10.1016/j.jmb.2005.01.071
[44]  Casey RM (2005) BLAST sequences aid in genomics and proteomics. Business Intelligence Network.
[45]  Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The pfam protein families database. Nucleic acids research.
[46]  Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics 25: 2745–2746. doi: 10.1093/bioinformatics/btp518
[47]  Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5: e1000376. doi: 10.1371/journal.pcbi.1000376
[48]  Djinovic Carugo K, Banuelos S, Saraste M (1997) Crystal structure of a calponin homology domain. Nat Struct Biol 4: 175–179. doi: 10.1038/nsb0397-175
[49]  Voet D, Voet JG (2004) Biochemistry: Wiley.
[50]  Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62: 24–45. doi: 10.1002/prot.20750
[51]  Kelly SM, Price NC (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta 1338: 161–185. doi: 10.1016/s0167-4838(96)00190-2
[52]  Johnson WC Jr (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17: 145–166. doi: 10.1146/annurev.bb.17.060188.001045
[53]  Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. New York: Plnum Press.
[54]  Bernardo P, Svergun DI (2010) Structural insight into intrinsically disordered proteins by small-angle X-ray scattering. In: Uversky VN, Longhi S, editors. Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure And Conformation: John Wile & Sons, Inc. 451–475.
[55]  Bernado P, Svergun DI (2012) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8: 151–167. doi: 10.1039/c1mb05275f
[56]  Longhi S, Receveur-Brechot V, Karlin D, Johansson K, Darbon H, et al. (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278: 18638–18648. doi: 10.1074/jbc.m300518200
[57]  Roy A, Kucukural A, Zhang Y (2010) I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738. doi: 10.1038/nprot.2010.5
[58]  Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40–2105-9-40. doi: 10.1186/1471-2105-9-40
[59]  DeLano WL (2002) The PyMOL user’s manual. San Carlo: DeLano Scientific.
[60]  Stradal T, Kranewitter W, Winder SJ, Gimona M (1998) CH domains revisited. FEBS Lett 431: 134–137. doi: 10.1016/s0014-5793(98)00751-0
[61]  Lawson D, Harrison M, Shapland C (1997) Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motil Cytoskeleton 38: 250–257. doi: 10.1002/(sici)1097-0169(1997)38:3<250::aid-cm3>3.0.co;2-9
[62]  Assinder SJ, Stanton JA, Prasad PD (2009) Transgelin: An actin-binding protein and tumour suppressor. Int J Biochem Cell Biol 41: 482–486. doi: 10.1016/j.biocel.2008.02.011
[63]  Nair RR, Solway J, Boyd DD (2006) Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem 281: 26424–26436. doi: 10.1074/jbc.m602703200
[64]  Yang Z, Chang YJ, Miyamoto H, Ni J, Niu Y, et al. (2007) Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol 21: 343–358. doi: 10.1210/me.2006-0104
[65]  Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19: 31–38.
[66]  Uversky VN (2013) The most important thing is the tail: Multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 587: 1891–1901. doi: 10.1016/j.febslet.2013.04.042
[67]  Xue B, Brown CJ, Dunker AK, Uversky VN (2013) Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim Biophys Acta 1834: 725–738. doi: 10.1016/j.bbapap.2013.01.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133