[1] | Riddiford LM (1994) Cellular and molecular actions of juvenile hormone. I. general considerations and premetamorphic actions. Advances in insect physiolog 24.
|
[2] | Riddiford LM, Cherbas P, Truman JW (2000) Ecdysone receptors and their biological actions. Vitam Horm 60: 1–73. doi: 10.1016/s0083-6729(00)60016-x
|
[3] | Li Y, Zhang Z, Robinson GE, Palli SR (2007) Identification and characterization of a juvenile hormone response element and its binding proteins. J Biol Chem 282: 37605–37617. doi: 10.1074/jbc.m704595200
|
[4] | Liu PC, Wang JX, Song QS, Zhao XF (2011) The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS One 6: e19776. doi: 10.1371/journal.pone.0019776
|
[5] | Ba?uelos S, Saraste M, Carugo KD (1998) Structural comparisons of calponin homology domains: Implications for actin binding. Structure 6: 1419–1431. doi: 10.1016/s0969-2126(98)00141-5
|
[6] | Gimona M, Djinovic-Carugo K, Kranewitter WJ, Winder SJ (2002) Functional plasticity of CH domains. FEBS Lett 513: 98–106. doi: 10.1016/s0014-5793(01)03240-9
|
[7] | Hartwig JH (1994) Actin-binding proteins 1: Spectrin superfamily. Protein Profile 1: 706–778.
|
[8] | McGough A (1998) F-actin-binding proteins. Curr Opin Struct Biol 8: 166–176. doi: 10.1016/s0959-440x(98)80034-1
|
[9] | Fu Q, Liu PC, Wang JX, Song QS, Zhao XF (2009) Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera. BMC Genomics 10: 600–2164–10–600. doi: 10.1186/1471-2164-10-600
|
[10] | Gimona M, Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111 (Pt 13): 1813–1821.
|
[11] | Uversky VN (2002) Natively unfolded proteins: A point where biology waits for physics. Protein Sci 11: 739–756. doi: 10.1110/ps.4210102
|
[12] | Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, et al. (2001) Intrinsically disordered protein. J Mol Graph Model 19: 26–59.
|
[13] | Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. the roles of intrinsic disorder in protein interaction networks. FEBS J 272: 5129–5148. doi: 10.1111/j.1742-4658.2005.04948.x
|
[14] | Kostyukovsky M, Chen B, Atsmi S, Shaaya E (2000) Biological activity of two juvenoids and two ecdysteroids against three stored product insects. Insect Biochem Mol Biol 30: 891–897. doi: 10.1016/s0965-1748(00)00063-1
|
[15] | Ishaaya I, Yablonski S (1976) Induction of prolonged larval feeding stage by juvenile hormone analogues in Tribolium castaneum. Phytoparasitica 4: 9–18. doi: 10.1007/bf02981074
|
[16] | Schroder R, Beermann A, Wittkopp N, Lutz R (2008) From development to biodiversity–Tribolium castaneum, an insect model organism for short germband development. Dev Genes Evol 218: 119–126. doi: 10.1007/s00427-008-0214-3
|
[17] | Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182: 319–326. doi: 10.1016/0003-2697(89)90602-7
|
[18] | Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. doi: 10.1038/227680a0
|
[19] | Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617. doi: 10.1021/bi00789a030
|
[20] | Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751: 119–139. doi: 10.1016/j.bbapap.2005.06.005
|
[21] | Sreerama N, Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383: 318–351. doi: 10.1016/s0076-6879(04)83013-1
|
[22] | Begg GE, Harper SL, Speicher DW (2001) Characterizing recombinant proteins using HPLC gel filtration and mass spectrometry. Curr Protoc Protein Sci Chapter 7: Unit 7.10.
|
[23] | de Haen C (1987) Molecular weight standards for calibration of gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis: Ferritin and apoferritin. Anal Biochem 166: 235–245. doi: 10.1016/0003-2697(87)90570-7
|
[24] | Uversky VN (1993) Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32: 13288–13298. doi: 10.1021/bi00211a042
|
[25] | Andrews P (1970) Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods Biochem Anal 18: 1–53. doi: 10.1002/9780470110362.ch1
|
[26] | Brown PH, Schuck P (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 90: 4651–4661. doi: 10.1529/biophysj.106.081372
|
[27] | Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78: 1606–1619. doi: 10.1016/s0006-3495(00)76713-0
|
[28] | Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Analyticall ultracentrifugation in biochemistry and polymer science. In: Harding S, Rowe A, editors. Biochemistry and Polymer Science. 90–125.
|
[29] | Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, et al. (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature Methods 6: 606–612. doi: 10.1038/nmeth.1353
|
[30] | Konarev PV, Volkov VV, Sokolova AV, Koch HJ, Svergun DI (2003) PRIMUS: A windows PC-based system for small- angle scattering data analysis. Journal of Applied Crystallography 36: 1277–1282. doi: 10.1107/s0021889803012779
|
[31] | Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography 25: 495–503. doi: 10.1107/s0021889892001663
|
[32] | Glatter O, Kratky O (1982) Small-angle X-ray scattering. London: Academic Press.
|
[33] | Svergun DI, Koch M (2003) Small - angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics 66: 1735–1782. doi: 10.1088/0034-4885/66/10/r05
|
[34] | Mertens HD, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172: 128–141. doi: 10.1016/j.jsb.2010.06.012
|
[35] | Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70–77. doi: 10.1016/0003-9861(59)90090-6
|
[36] | Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of ellman’s reagent. Methods Enzymol 91: 49–60. doi: 10.1016/s0076-6879(83)91010-8
|
[37] | Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, et al. (2001) Sequence complexity of disordered protein. Proteins 42: 38–48. doi: 10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3
|
[38] | Romero P, Obradovic Z, Dunker AK (1997) Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform Ser Workshop Genome Inform 8: 110–124.
|
[39] | Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10: 30–40.
|
[40] | Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: A tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8: 211. doi: 10.1186/1471-2105-8-211
|
[41] | Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, et al. (2007) DisProt: The database of disordered proteins. Nucleic Acids Res 35: D786–93. doi: 10.1093/nar/gkl893
|
[42] | Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 3433–3434. doi: 10.1093/bioinformatics/bti541
|
[43] | Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347: 827–839. doi: 10.1016/j.jmb.2005.01.071
|
[44] | Casey RM (2005) BLAST sequences aid in genomics and proteomics. Business Intelligence Network.
|
[45] | Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The pfam protein families database. Nucleic acids research.
|
[46] | Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics 25: 2745–2746. doi: 10.1093/bioinformatics/btp518
|
[47] | Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5: e1000376. doi: 10.1371/journal.pcbi.1000376
|
[48] | Djinovic Carugo K, Banuelos S, Saraste M (1997) Crystal structure of a calponin homology domain. Nat Struct Biol 4: 175–179. doi: 10.1038/nsb0397-175
|
[49] | Voet D, Voet JG (2004) Biochemistry: Wiley.
|
[50] | Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62: 24–45. doi: 10.1002/prot.20750
|
[51] | Kelly SM, Price NC (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta 1338: 161–185. doi: 10.1016/s0167-4838(96)00190-2
|
[52] | Johnson WC Jr (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17: 145–166. doi: 10.1146/annurev.bb.17.060188.001045
|
[53] | Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. New York: Plnum Press.
|
[54] | Bernardo P, Svergun DI (2010) Structural insight into intrinsically disordered proteins by small-angle X-ray scattering. In: Uversky VN, Longhi S, editors. Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure And Conformation: John Wile & Sons, Inc. 451–475.
|
[55] | Bernado P, Svergun DI (2012) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8: 151–167. doi: 10.1039/c1mb05275f
|
[56] | Longhi S, Receveur-Brechot V, Karlin D, Johansson K, Darbon H, et al. (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278: 18638–18648. doi: 10.1074/jbc.m300518200
|
[57] | Roy A, Kucukural A, Zhang Y (2010) I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738. doi: 10.1038/nprot.2010.5
|
[58] | Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40–2105-9-40. doi: 10.1186/1471-2105-9-40
|
[59] | DeLano WL (2002) The PyMOL user’s manual. San Carlo: DeLano Scientific.
|
[60] | Stradal T, Kranewitter W, Winder SJ, Gimona M (1998) CH domains revisited. FEBS Lett 431: 134–137. doi: 10.1016/s0014-5793(98)00751-0
|
[61] | Lawson D, Harrison M, Shapland C (1997) Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motil Cytoskeleton 38: 250–257. doi: 10.1002/(sici)1097-0169(1997)38:3<250::aid-cm3>3.0.co;2-9
|
[62] | Assinder SJ, Stanton JA, Prasad PD (2009) Transgelin: An actin-binding protein and tumour suppressor. Int J Biochem Cell Biol 41: 482–486. doi: 10.1016/j.biocel.2008.02.011
|
[63] | Nair RR, Solway J, Boyd DD (2006) Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem 281: 26424–26436. doi: 10.1074/jbc.m602703200
|
[64] | Yang Z, Chang YJ, Miyamoto H, Ni J, Niu Y, et al. (2007) Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol 21: 343–358. doi: 10.1210/me.2006-0104
|
[65] | Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19: 31–38.
|
[66] | Uversky VN (2013) The most important thing is the tail: Multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 587: 1891–1901. doi: 10.1016/j.febslet.2013.04.042
|
[67] | Xue B, Brown CJ, Dunker AK, Uversky VN (2013) Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim Biophys Acta 1834: 725–738. doi: 10.1016/j.bbapap.2013.01.012
|