全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Structural and Functional Basis of Catalysis Mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans

DOI: 10.1371/journal.pone.0096262

Full-Text   Cite this paper   Add to My Lib

Abstract:

FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.

References

[1]  Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, et al. (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321–332. doi: 10.1007/s10534-007-9121-8
[2]  Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23: 845–850. doi: 10.1039/b502796a
[3]  Ryan A, Laurieri N, Westwood I, Wang CJ, Lowe E, et al. (2010) A novel mechanism for azoreduction. J Mol Biol 400: 24–37. doi: 10.1016/j.jmb.2010.04.023
[4]  Deller S, Macheroux P, Sollner S (2008) Flavin-dependent quinone reductases. Cell Mol Life Sci 65: 141–160. doi: 10.1007/s00018-007-7300-y
[5]  Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271: 553–562. doi: 10.1046/j.1432-1033.2003.03957.x
[6]  Sedlacek V, Kucera I (2010) Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch Microbiol 192: 919–926. doi: 10.1007/s00203-010-0622-4
[7]  Sedlacek V, van Spanning RJ, Kucera I (2009) Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Arch Biochem Biophys 483: 29–36. doi: 10.1016/j.abb.2008.12.016
[8]  Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280: 22590–22595. doi: 10.1074/jbc.m501654200
[9]  Sollner S, Macheroux P (2009) New roles of flavoproteins in molecular cell biology: an unexpected role for quinone reductases as regulators of proteasomal degradation. FEBS J 276: 4313–4324. doi: 10.1111/j.1742-4658.2009.07143.x
[10]  Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, et al. (2006) Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol 72: 7074–7082. doi: 10.1128/aem.01334-06
[11]  Thorne SH, Barak Y, Liang W, Bachmann MH, Rao J, et al. (2009) CNOB/ChrR6, a new prodrug enzyme cancer chemotherapy. Mol Cancer Ther 8: 333–341. doi: 10.1158/1535-7163.mct-08-0707
[12]  Klumpler T, Sedlacek V, Marek J, Wimmerova M, Kucera I (2010) Crystallization and initial X-ray diffraction studies of the flavoenzyme NAD(P)H:(acceptor) oxidoreductase (FerB) from the soil bacterium Paracoccus denitrificans. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 431–434. doi: 10.1107/s1744309110005099
[13]  Tesarik R, Sedlacek V, Plockova J, Wimmerova M, Turanek J, et al. (2009) Heterologous expression and molecular characterization of the NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. Protein Expr Purif 68: 233–238. doi: 10.1016/j.pep.2009.07.014
[14]  Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D Biol Crystallogr 61: 449–457. doi: 10.1107/s0907444905001307
[15]  Klumpler T, Marek J, Sedlacek V, Kucera I (2010) Solving phase problem using a Se-Met derivative of the flavoenzyme NAD(P)H:acceptor oxidoreductase (FerB). Materials Structure in Chemistry, Biology, Physics and Technology 17: b21–b23.
[16]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[17]  Joosten RP, Joosten K, Murshudov GN, Perrakis A (2012) PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr D Biol Crystallogr 68: 484–496. doi: 10.1107/s0907444911054515
[18]  Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. doi: 10.1093/nar/gkq366
[19]  Svergun D, Barberato C, Koch MHJ (1995) CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28: 768–773. doi: 10.1107/s0021889895007047
[20]  Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36: 1277–1282. doi: 10.1107/s0021889803012779
[21]  Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, et al. (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45: 342–350. doi: 10.1107/s0021889812007662
[22]  Lostao A, El Harrous M, Daoudi F, Romero A, Parody-Morreale A, et al. (2000) Dissecting the energetics of the apoflavodoxin-FMN complex. J Biol Chem 275: 9518–9526. doi: 10.1074/jbc.275.13.9518
[23]  Massey V (1990) A simple method for the determination of redox potentials. In: Curti B, Ronchi S, Zanetti G, editors. Flavins and Flavoproteins. Berlin: de Gruyter W. pp. 59–66.
[24]  Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797. doi: 10.1016/j.jmb.2007.05.022
[25]  Eswaramoorthy S, Poulain S, Hienerwadel R, Bremond N, Sylvester MD, et al. (2012) Crystal structure of ChrR—a quinone reductase with the capacity to reduce chromate. PloS one 7: e36017. doi: 10.1371/journal.pone.0036017
[26]  Jin H, Zhang Y, Buchko GW, Varnum SM, Robinson H, et al. (2012) Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. PloS one 7: e42432. doi: 10.1371/journal.pone.0042432
[27]  Agarwal R, Bonanno JB, Burley SK, Swaminathan S (2006) Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Crystallogr D Biol Crystallogr 62: 383–391. doi: 10.1107/s0907444906001600
[28]  Rohr AK, Hersleth HP, Andersson KK (2010) Tracking flavin conformations in protein crystal structures with Raman spectroscopy and QM/MM calculations. Angew Chem Int Ed Engl 49: 2324–2327. doi: 10.1002/anie.200907143
[29]  Hefti MH, Milder FJ, Boeren S, Vervoort J, van Berkel WJ (2003) A His-tag based immobilization method for the preparation and reconstitution of apoflavoproteins. Biochim Biophys Acta 1619: 139–143. doi: 10.1016/s0304-4165(02)00474-9
[30]  Tedeschi G, Chen S, Massey V (1995) DT-diaphorase. Redox potential, steady-state, and rapid reaction studies. J Biol Chem 270: 1198–1204.
[31]  Tedeschi G, Zetta L, Negri A, Mortarino M, Ceciliani F, et al. (1997) Redox potentials and quinone reductase activity of L-aspartate oxidase from Escherichia coli. Biochemistry 36: 16221–16230. doi: 10.1021/bi970751m
[32]  Mayhew SG (1999) Potentiometric measurement of oxidation-reduction potentials. Methods Mol Biol 131: 49–59. doi: 10.1385/1-59259-266-x:49
[33]  Bollen YJ, Westphal AH, Lindhoud S, van Berkel WJ, van Mierlo CP (2012) Distant residues mediate picomolar binding affinity of a protein cofactor. Nat Commun 3: 1010. doi: 10.1038/ncomms2010
[34]  Grandori R, Khalifah P, Boice JA, Fairman R, Giovanielli K, et al. (1998) Biochemical characterization of WrbA, founding member of a new family of multimeric flavodoxin-like proteins. J Biol Chem 273: 20960–20966. doi: 10.1074/jbc.273.33.20960
[35]  Ji HF, Shen L, Carey J, Grandori R, Zhang HY (2006) Why WrbA is weaker than flavodoxin in binding FMN. A molecular modeling study. Theochem-J Mol Struct 764: 155–160. doi: 10.1016/j.theochem.2006.01.027
[36]  Sancho J (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci 63: 855–864. doi: 10.1007/s00018-005-5514-4
[37]  Nissen MS, Youn B, Knowles BD, Ballinger JW, Jun SY, et al. (2008) Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem 283: 28710–28720. doi: 10.1074/jbc.m804535200
[38]  Bellamacina CR (1996) The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins. Faseb J 10: 1257–1269.
[39]  Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25: 126–132. doi: 10.1016/s0968-0004(99)01533-9
[40]  Li R, Bianchet MA, Talalay P, Amzel LM (1995) The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A 92: 8846–8850. doi: 10.1073/pnas.92.19.8846
[41]  Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ (2001) NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J Biol Chem 276: 29163–29170. doi: 10.1074/jbc.m101731200
[42]  Hubbard PA, Liang X, Schulz H, Kim JJ (2003) The crystal structure and reaction mechanism of Escherichia coli 2,4-dienoyl-CoA reductase. J Biol Chem 278: 37553–37560. doi: 10.1074/jbc.m304642200
[43]  Liu ZJ, Chen HZ, Shaw N, Hopper SL, Chen LR, et al. (2007) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463: 68–77. doi: 10.1016/j.abb.2007.03.003
[44]  Blaesse M, Kupke T, Huber R, Steinbacher S (2000) Crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate. Embo J 19: 6299–6310. doi: 10.1093/emboj/19.23.6299
[45]  Deller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, Gubitz GM, et al. (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45: 7083–7091. doi: 10.1021/bi052478r
[46]  Bastian M, Sigel H (1997) The self-association of flavin mononucleotide (FMN(2-)) as determined by (1)H NMR shift measurements. Biophys Chem 67: 27–34. doi: 10.1016/s0301-4622(97)00012-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133