全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Degradation of AIMP1/p43 Induced by Hepatitis C Virus E2 Leads to Upregulation of TGF-β Signaling and Increase in Surface Expression of gp96

DOI: 10.1371/journal.pone.0096302

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatitis C virus (HCV) causes chronic hepatitis leading to liver fibrosis and autoimmune diseases. AIMP1/p43 is a multifunctional protein initially known as a cofactor of aminoacyl tRNA synthetase complex. Its function includes negative regulation of TGF-β signaling and suppression of Lupus-like autoimmune disease by inhibition of surface expression of gp96. HCV E2 was shown to directly interact with AIMP1/p43 by GST pulldown assay and coimmunoprecipitation. Their subcellular colocalization was observed in an immunofluorescence confocal microscopy. We showed that HCV E2 led to degradation of AIMP1/p43 in two ways. First, in the presence of HCV E2, endogenous AIMP1/p43 was shown to be degraded in an ubiquitin-dependent proteasome pathway. Second, grp78, an ER chaperone, was shown to interact with and stabilize AIMP1/p43. And HCV E2 inhibited this interaction leading to reduction of cellular AIMP1/p43. The degradation of AIMP1/p43 by HCV E2 resulted in increase of TGF-β signaling and cell surface expression of gp96. Thus we suggest that these are novel mechanisms responsible for liver fibrosis and autoimmune diseases caused by HCV.

References

[1]  Banhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, et al. (2007) Endoplasmic reticulum stress. Ann N Y Acad Sci 1113: 58–71. doi: 10.1196/annals.1391.007
[2]  Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H (1994) Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol 68: 5045–5055.
[3]  Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115: 209–218. doi: 10.1172/jci24282
[4]  Benedicto I, Molina-Jimenez F, Bartosch B, Cosset FL, Lavillette D, et al. (2009) The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol 83: 8012–8020. doi: 10.1128/jvi.00038-09
[5]  Cheng PL, Chang MH, Chao CH, Lee YH (2004) Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-beta/Smad3-mediated transcriptional activation. Oncogene 23: 7821–7838 doi:10.1038/sj.onc.1208066.
[6]  Choi SH, Hwang SB (2006) Modulation of the transforming growth factor-beta signal transduction pathway by hepatitis C virus nonstructural 5A protein. J Biol Chem 281: 7468–7478 doi:10.1074/jbc.M512438200.
[7]  Choi SH, Jeong SH, Hwang SB (2007) Large hepatitis delta antigen modulates transforming growth factor-beta signaling cascades: Implication of hepatitis delta virus-induced liver fibrosis. Gastroenterology 132: 343–357 doi:10.1053/j.gastro.2006.10.038.
[8]  Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, et al. (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446: 801–805. doi: 10.1038/nature05654
[9]  Ferri S, Muratori L, Lenzi M, Granito A, Bianchi FB, et al. (2008) HCV and autoimmunity. Curr Pharm Des 14: 1678–1685. doi: 10.2174/138161208784746824
[10]  Gale M Jr, Foy EM (2005) Evasion of intracellular host defense by hepatitis C virus. Nature 436: 939–945. doi: 10.1038/nature04078
[11]  Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7: d793–807. doi: 10.2741/gressner
[12]  Han JM, Park SG, Liu B, Park BJ, Kim JY, et al. (2007) Aminoacyl-tRNA synthetase-interacting multifunctional protein 1/p43 controls endoplasmic reticulum retention of heat shock protein gp96: Its pathological implications in lupus-like autoimmune diseases. Am J Pathol 170: 2042–2054. doi: 10.2353/ajpath.2007.061266
[13]  Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, et al. (1999) TGF-beta1 in liver fibrosis: An inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol 276: G1059–68.
[14]  Kasprzak A, Adamek A (2008) Role of hepatitis C virus proteins (C, NS3, NS5A) in hepatic oncogenesis. Hepatol Res 38: 1–26. doi: 10.1111/j.1872-034x.2007.00261.x
[15]  Ko YG, Park H, Kim T, Lee JW, Park SG, et al. (2001) A cofactor of tRNA synthetase, p43, is secreted to up-regulate proinflammatory genes. J Biol Chem 276: 23028–23033. doi: 10.1074/jbc.m101544200
[16]  Lee DK, Park SH, Yi Y, Choi SG, Lee C, et al. (2001) The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: Potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 15: 455–466 doi:10.1101/gad.856201.
[17]  Lee SH, Song R, Lee MN, Kim CS, Lee H, et al. (2008) A molecular chaperone glucose-regulated protein 94 blocks apoptosis induced by virus infection. Hepatology 47: 854–866. doi: 10.1002/hep.22107
[18]  Lee YS, Han JM, Kang T, Park YI, Kim HM, et al. (2006) Antitumor activity of the novel human cytokine AIMP1 in an in vivo tumor model. Mol Cells 21: 213–217.
[19]  Lee YS, Han JM, Son SH, Choi JW, Jeon EJ, et al. (2008) AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2. Biochem Biophys Res Commun 371: 395–400. doi: 10.1016/j.bbrc.2008.04.099
[20]  Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, et al. (1999) Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol 73: 3718–3722.
[21]  Lin C, Lindenbach BD, Pragai BM, McCourt DW, Rice CM (1994) Processing in the hepatitis C virus E2-NS2 region: Identification of p7 and two distinct E2-specific products with different C termini. J Virol 68: 5063–5073.
[22]  Liu B, Dai J, Zheng H, Stoilova D, Sun S, et al. (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A 100: 15824–15829. doi: 10.1073/pnas.2635458100
[23]  MacParland SA, Pham TN, Gujar SA, Michalak TI (2006) De novo infection and propagation of wild-type hepatitis C virus in human T lymphocytes in vitro. J Gen Virol 87: 3577–3586. doi: 10.1099/vir.0.81868-0
[24]  Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, et al. (2007) Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology 46: 48–57 doi:10.1002/hep.21672.
[25]  Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, et al. (2005) Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19: 297–308 doi:10.1016/j.molcel.2005.06.028.
[26]  Otto GA, Puglisi JD (2004) The pathway of HCV IRES-mediated translation initiation. Cell 119: 369–380. doi: 10.1016/j.cell.2004.09.038
[27]  Park SG, Choi EC, Kim S (2010) Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): A triad for cellular homeostasis. IUBMB Life 62: 296–302. doi: 10.1002/iub.324
[28]  Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, et al. (2002) Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 277: 45243–45248. doi: 10.1074/jbc.m207934200
[29]  Pavio N, Taylor DR, Lai MM (2002) Detection of a novel unglycosylated form of hepatitis C virus E2 envelope protein that is located in the cytosol and interacts with PKR. J Virol 76: 1265–1272. doi: 10.1128/jvi.76.3.1265-1272.2002
[30]  Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, et al. (1998) Binding of hepatitis C virus to CD81. Science 282: 938–941. doi: 10.1126/science.282.5390.938
[31]  Rahimi RA, Leof EB (2007) TGF-beta signaling: A tale of two responses. J Cell Biochem 102: 593–608 doi:0.1002/jcb.21501.
[32]  Rosenberg S (2001) Recent advances in the molecular biology of hepatitis C virus. J Mol Biol 313: 451–464. doi: 10.1006/jmbi.2001.5055
[33]  Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, et al. (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21: 5017–5025. doi: 10.1093/emboj/cdf529
[34]  Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569: 29–63. doi: 10.1016/j.mrfmmm.2004.06.056
[35]  Schuppan D, Krebs A, Bauer M, Hahn EG (2003) Hepatitis C and liver fibrosis. Cell Death Differ 10 Suppl 1S59–67. doi: 10.1038/sj.cdd.4401163
[36]  Seeff LB, Hoofnagle JH (2003) Appendix: The national institutes of health consensus development conference management of hepatitis C 2002. Clin Liver Dis 7: 261–287. doi: 10.1016/s1089-3261(02)00078-8
[37]  Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2: 185–194. doi: 10.1038/nri749
[38]  Suzuki R, Suzuki T, Ishii K, Matsuura Y, Miyamura T (1999) Processing and functions of hepatitis C virus proteins. Intervirology 42: 145–152. doi: 10.1159/000024973
[39]  Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, et al. (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277: 20847–20853. doi: 10.1074/jbc.m200425200
[40]  Wells RG (2000) Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 279: G845–50.
[41]  Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, et al. (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014. doi: 10.1016/0092-8674(92)90395-s

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133