17β-estradiol (E2) may interfere with endocrine, metabolic, and gender-differentiated functions in liver in both females and males. Indirect mechanisms play a crucial role because of the E2 influence on the pituitary GH secretion and the GHR-JAK2-STAT5 signaling pathway in the target tissues. E2, through its interaction with the estrogen receptor, exerts direct effects on liver. Hypothyroidism also affects endocrine and metabolic functions of the liver, rendering a metabolic phenotype with features that mimic deficiencies in E2 or GH. In this work, we combined the lipid and transcriptomic analysis to obtain comprehensive information on the molecular mechanisms of E2 effects, alone and in combination with GH, to regulate liver functions in males. We used the adult hypothyroid-orchidectomized rat model to minimize the influence of internal hormones on E2 treatment and to explore its role in male-differentiated functions. E2 influenced genes involved in metabolism of lipids and endo-xenobiotics, and the GH-regulated endocrine, metabolic, immune, and male-specific responses. E2 induced a female-pattern of gene expression and inhibited GH-regulated STAT5b targeted genes. E2 did not prevent the inhibitory effects of GH on urea and amino acid metabolism-related genes. The combination of E2 and GH decreased transcriptional immune responses. E2 decreased the hepatic content of saturated fatty acids and induced a transcriptional program that seems to be mediated by the activation of PPARα. In contrast, GH inhibited fatty acid oxidation. Both E2 and GH replacements reduced hepatic CHO levels and increased the formation of cholesterol esters and triacylglycerols. Notably, the hepatic lipid profiles were endowed with singular fingerprints that may be used to segregate the effects of different hormonal replacements. In summary, we provide in vivo evidence that E2 has a significant impact on lipid content and transcriptome in male liver and that E2 exerts a marked influence on GH physiology, with implications in human therapy.
References
[1]
Simpson ER, McInnes KJ (2005) Sex and fat—can one factor handle both? Cell Metab 2: 346–347. doi: 10.1016/j.cmet.2005.11.010
[2]
Barros RP, Gustafsson JA (2011) Estrogen receptors and the metabolic network. Cell Metab 14: 289–299. doi: 10.1016/j.cmet.2011.08.005
[3]
Maher AC, Akhtar M, Tarnopolsky MA (2010) Men supplemented with 17beta-estradiol have increased beta-oxidation capacity in skeletal muscle. Physiol Genomics 42: 342–347. doi: 10.1152/physiolgenomics.00016.2010
[4]
Devries MC, Hamadeh MJ, Graham TE, Tarnopolsky MA (2005) 17beta-estradiol supplementation decreases glucose rate of appearance and disappearance with no effect on glycogen utilization during moderate intensity exercise in men. J Clin Endocrinol Metab 90: 6218–6225. doi: 10.1210/jc.2005-0926
[5]
Hamadeh MJ, Devries MC, Tarnopolsky MA (2005) Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J Clin Endocrinol Metab 90: 3592–3599. doi: 10.1210/jc.2004-1743
[6]
Diaz M, Ramirez CM, Marin R, Marrero-Alonso J, Gomez T, et al. (2004) Acute relaxation of mouse duodenum [correction of duodenun] by estrogens. Evidence for an estrogen receptor-independent modulation of muscle excitability. Eur J Pharmacol 501: 161–178. doi: 10.1016/s0014-2999(04)00932-x
[7]
Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, et al. (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331: 1056–1061. doi: 10.1056/nejm199410203311604
[8]
Rochira V, Balestrieri A, Faustini-Fustini M, Carani C (2001) Role of estrogen on bone in the human male: insights from the natural models of congenital estrogen deficiency. Mol Cell Endocrinol 178: 215–220. doi: 10.1016/s0303-7207(01)00446-4
[9]
Rochira V, Balestrieri A, Faustini-Fustini M, Borgato S, Beck-Peccoz P, et al. (2002) Pituitary function in a man with congenital aromatase deficiency: effect of different doses of transdermal E2 on basal and stimulated pituitary hormones. J Clin Endocrinol Metab 87: 2857–2862. doi: 10.1210/jcem.87.6.8556
[10]
Rochira V, Zirilli L, Maffei L, Premrou V, Aranda C, et al. (2010) Tall stature without growth hormone: four male patients with aromatase deficiency. J Clin Endocrinol Metab 95: 1626–1633. doi: 10.1210/jc.2009-1743
[11]
Della Torre S, Rando G, Meda C, Stell A, Chambon P, et al. (2011) Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-1. Cell Metab 13: 205–214. doi: 10.1016/j.cmet.2011.01.002
[12]
Villa A, Della Torre S, Stell A, Cook J, Brown M, et al. (2012) Tetradian oscillation of estrogen receptor alpha is necessary to prevent liver lipid deposition. Proc Natl Acad Sci U S A 109: 11806–11811. doi: 10.1073/pnas.1205797109
[13]
Pedram A, Razandi M, O'Mahony F, Harvey H, Harvey BJ, et al. (2013) Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling. Sci Signal 6: ra36. doi: 10.1126/scisignal.2004013
[14]
Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25: 693–721. doi: 10.1210/er.2003-0035
[15]
Mode A, Gustafsson JA (2006) Sex and the liver - a journey through five decades. Drug Metab Rev 38: 197–207. doi: 10.1080/03602530600570057
[16]
Rico-Bautista E, Flores-Morales A, Fernandez-Perez L (2006) Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev 17: 431–439. doi: 10.1016/j.cytogfr.2006.09.008
[17]
Zadjali F, Santana-Farre R, Vesterlund M, Carow B, Mirecki-Garrido M, et al. (2012) SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice. FASEB J 26: 3282–3291. doi: 10.1096/fj.12-205583
[18]
Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, et al. (2009) Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Biol Chem 284: 19937–19944. doi: 10.1074/jbc.m109.014308
[19]
Sos BC, Harris C, Nordstrom SM, Tran JL, Balazs M, et al. (2011) Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Invest 121: 1412–1423. doi: 10.1172/jci42894
[20]
Barclay JL, Nelson CN, Ishikawa M, Murray LA, Kerr LM, et al. (2011) GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 152: 181–192. doi: 10.1210/en.2010-0537
[21]
Cummings DE, Merriam GR (2003) Growth hormone therapy in adults. Annu Rev Med 54: 513–533. doi: 10.1146/annurev.med.54.101601.152147
[22]
Wolthers T, Hoffman DM, Nugent AG, Duncan MW, Umpleby M, et al. (2001) Oral estrogen antagonizes the metabolic actions of growth hormone in growth hormone-deficient women. Am J Physiol Endocrinol Metab 281: E1191–1196.
[23]
Munzer T, Rosen CJ, Harman SM, Pabst KM, St Clair C, et al. (2006) Effects of GH and/or sex steroids on circulating IGF-I and IGFBPs in healthy, aged women and men. Am J Physiol Endocrinol Metab 290: E1006–1013. doi: 10.1152/ajpendo.00166.2005
[24]
Fitts JM, Klein RM, Powers CA (1998) Comparison of tamoxifen effects on the actions of triiodothyronine or growth hormone in the ovariectomized-hypothyroid rat. J Pharmacol Exp Ther 286: 392–402.
[25]
Fitts JM, Klein RM, Powers CA (2001) Estrogen and tamoxifen interplay with T(3) in male rats: pharmacologically distinct classes of estrogen responses affecting growth, bone, and lipid metabolism, and their relation to serum GH and IGF-I. Endocrinology 142: 4223–4235. doi: 10.1210/en.142.10.4223
[26]
Sap J, de Magistris L, Stunnenberg H, Vennstrom B (1990) A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J 9: 887–896.
[27]
Lopez-Guerra A, Chirino R, Navarro D, Fernandez L, Boada LD, et al. (1997) Estrogen antagonism on T3 and growth hormone control of the liver microsomal low-affinity glucocorticoid binding site (LAGS). J Steroid Biochem Mol Biol 63: 219–228. doi: 10.1016/s0960-0760(97)00123-4
[28]
Loria P, Carulli L, Bertolotti M, Lonardo A (2009) Endocrine and liver interaction: the role of endocrine pathways in NASH. Nat Rev Gastroenterol Hepatol 6: 236–247. doi: 10.1038/nrgastro.2009.33
[29]
Nanto-Salonen K, Muller HL, Hoffman AR, Vu TH, Rosenfeld RG (1993) Mechanisms of thyroid hormone action on the insulin-like growth factor system: all thyroid hormone effects are not growth hormone mediated. Endocrinology 132: 781–788. doi: 10.1210/endo.132.2.7678799
[30]
Takashima K, Mizukawa Y, Morishita K, Okuyama M, Kasahara T, et al. (2006) Effect of the difference in vehicles on gene expression in the rat liver—analysis of the control data in the Toxicogenomics Project Database. Life Sci 78: 2787–2796. doi: 10.1016/j.lfs.2005.11.010
[31]
Geng XC, Li B, Zhang L, Song Y, Lin Z, et al. (2012) Corn oil as a vehicle in drug development exerts a dose-dependent effect on gene expression profiles in rat thymus. J Appl Toxicol 32: 850–857. doi: 10.1002/jat.2773
[32]
Oscarsson J, Olofsson SO, Bondjers G, Eden S (1989) Differential effects of continuous versus intermittent administration of growth hormone to hypophysectomized female rats on serum lipoproteins and their apoproteins. Endocrinology 125: 1638–1649. doi: 10.1210/endo-125-3-1638
[33]
Waxman DJ, Pampori NA, Ram PA, Agrawal AK, Shapiro BH (1991) Interpulse interval in circulating growth hormone patterns regulates sexually dimorphic expression of hepatic cytochrome P450. Proc Natl Acad Sci U S A 88: 6868–6872. doi: 10.1073/pnas.88.15.6868
[34]
Fabelo N, Martin V, Gonzalez C, Alonso A, Diaz M (2012a) Effects of oestradiol on brain lipid class and Fatty Acid composition: comparison between pregnant and ovariectomised oestradiol-treated rats. J Neuroendocrinol 24: 292–309. doi: 10.1111/j.1365-2826.2011.02242.x
[35]
Almansa E, Sanchez JJ, Cozzi S, Rodriguez C, Diaz M (2003) Temperature-activity relationship for the intestinal Na+-K+-ATPase of Sparus aurata. A role for the phospholipid microenvironment? J Comp Physiol B 173: 231–237.
[36]
Henriquez-Hernandez LA, Flores-Morales A, Santana-Farre R, Axelson M, Nilsson P, et al. (2007) Role of pituitary hormones on 17alpha-ethinylestradiol-induced cholestasis in rat. J Pharmacol Exp Ther 320: 695–705. doi: 10.1124/jpet.106.113209
[37]
Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32 Suppl: 496–501 doi: 10.1038/ng1032
[38]
Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121. doi: 10.1073/pnas.091062498
[39]
Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210. doi: 10.1093/nar/30.1.207
[40]
Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
[41]
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2: 2366–2382. doi: 10.1038/nprot.2007.324
[42]
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45. doi: 10.1093/nar/29.9.e45
[43]
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386. doi: 10.1385/1-59259-192-2:365
[44]
Raykov T, Marcoulides GA (2008) Introduction to applied multivariate analysis. New York: Taylor & Francis.
[45]
Fabelo N, Martin V, Marin R, Santpere G, Aso E, et al. (2012b) Evidence for Premature Lipid Raft Aging in APP/PS1 Double-Transgenic Mice, a Model of Familial Alzheimer Disease. J Neuropathol Exp Neurol 71: 868–881. doi: 10.1097/nen.0b013e31826be03c
[46]
Alonso A, Fernandez R, Ordonez P, Moreno M, Patterson AM, et al. (2006) Regulation of estrogen receptor alpha by estradiol in pregnant and estradiol treated rats. Steroids 71: 1052–1061. doi: 10.1016/j.steroids.2006.09.004
[47]
Vidal OM, Merino R, Rico-Bautista E, Fernandez-Perez L, Chia DJ, et al. (2007) In vivo transcript profiling and phylogenetic analysis identifies suppressor of cytokine signaling 2 as a direct signal transducer and activator of transcription 5b target in liver. Mol Endocrinol 21: 293–311. doi: 10.1210/me.2006-0096
[48]
Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, et al. (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8: 77–83. doi: 10.1016/j.cmet.2008.05.006
[49]
Diaz ML, Fabelo N, Marin R (2012) Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice. Front Physiol 3: 454. doi: 10.3389/fphys.2012.00454
[50]
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5: 426–437. doi: 10.1016/j.cmet.2007.05.002
[51]
Hosui A, Hennighausen L (2008) Genomic dissection of the cytokine-controlled STAT5 signaling network in liver. Physiol Genomics 34: 135–143. doi: 10.1152/physiolgenomics.00048.2008
[52]
Borski RJ, Tsai W, DeMott-Friberg R, Barkan AL (1996) Regulation of somatic growth and the somatotropic axis by gonadal steroids: primary effect on insulin-like growth factor I gene expression and secretion. Endocrinology 137: 3253–3259. doi: 10.1210/endo.137.8.8754747
[53]
Hayase K, Yonekawa G, Yokogoshi H, Yoshida A (1991) Triiodothyronine administration affects urea synthesis in rats. J Nutr 121: 970–978.
[54]
Grofte T, Wolthers T, Jensen SA, Moller N, Jorgensen JO, et al. (1997) Effects of growth hormone and insulin-like growth factor-I singly and in combination on in vivo capacity of urea synthesis, gene expression of urea cycle enzymes, and organ nitrogen contents in rats. Hepatology 25: 964–969. doi: 10.1002/hep.510250429
[55]
Flores-Morales A, Stahlberg N, Tollet-Egnell P, Lundeberg J, Malek RL, et al. (2001) Microarray analysis of the in vivo effects of hypophysectomy and growth hormone treatment on gene expression in the rat. Endocrinology 142: 3163–3176. doi: 10.1210/endo.142.7.8235
[56]
Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D (2010) Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 20: 1–7. doi: 10.1016/j.ghir.2009.09.002
[57]
Debeer LJ, Mannaerts GP (1983) The mitochondrial and peroxisomal pathways of fatty acid oxidation in rat liver. Diabete Metab 9: 134–140.
[58]
Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, et al. (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100: 12027–12032. doi: 10.1073/pnas.1534923100
[59]
Reddy JK, Hashimoto T (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21: 193–230.
[60]
Djouadi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J, et al. (1998) A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator- activated receptor alpha- deficient mice. J Clin Invest 102: 1083–1091. doi: 10.1172/jci3949
[61]
Zhu L, Brown WC, Cai Q, Krust A, Chambon P, et al. (2012) Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes 62: 424–434. doi: 10.2337/db11-1718
[62]
Gao H, Bryzgalova G, Hedman E, Khan A, Efendic S, et al. (2006) Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol 20: 1287–1299. doi: 10.1210/me.2006-0012
[63]
Anderson CM, Stahl A (2013) SLC27 fatty acid transport proteins. Mol Aspects Med 34: 516–528. doi: 10.1016/j.mam.2012.07.010
[64]
Su X, Abumrad NA (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20: 72–77. doi: 10.1016/j.tem.2008.11.001
[65]
Falany CN, Xie X, Wheeler JB, Wang J, Smith M, et al. (2002) Molecular cloning and expression of rat liver bile acid CoA ligase. J Lipid Res 43: 2062–2071. doi: 10.1194/jlr.m200260-jlr200
[66]
Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90: 367–417. doi: 10.1152/physrev.00003.2009
[67]
Faulds MH, Zhao C, Dahlman-Wright K, Gustafsson JA (2012) The diversity of sex steroid action: regulation of metabolism by estrogen signaling. J Endocrinol 212: 3–12. doi: 10.1530/joe-11-0044
[68]
Yamazaki T, Okada H, Sakamoto T, Sunaga K, Tsuda T, et al. (2012) Differential induction of stearoyl-CoA desaturase 1 and 2 genes by fibrates in the liver of rats. Biol Pharm Bull 35: 116–120. doi: 10.1248/bpb.35.116
[69]
Hodgin JB, Maeda N (2002) Minireview: estrogen and mouse models of atherosclerosis. Endocrinology 143: 4495–4501. doi: 10.1210/en.2002-220844
[70]
Jogl G, Hsiao YS, Tong L (2004) Structure and function of carnitine acyltransferases. Ann N Y Acad Sci 1033: 17–29. doi: 10.1196/annals.1320.002
[71]
Ishimoto K, Nakamura H, Tachibana K, Yamasaki D, Ota A, et al. (2009) Sterol-mediated regulation of human lipin 1 gene expression in hepatoblastoma cells. J Biol Chem 284: 22195–22205. doi: 10.1074/jbc.m109.028753
[72]
Sjoberg A, Oscarsson J, Boren J, Eden S, Olofsson SO (1996) Mode of growth hormone administration influences triacylglycerol synthesis and assembly of apolipoprotein B-containing lipoproteins in cultured rat hepatocytes. J Lipid Res 37: 275–289.
[73]
Tollet-Egnell P, Flores-Morales A, Stahlberg N, Malek RL, Lee N, et al. (2001) Gene expression profile of the aging process in rat liver: normalizing effects of growth hormone replacement. Mol Endocrinol 15: 308–318. doi: 10.1210/mend.15.2.0594
[74]
Tollet-Egnell P, Parini P, Stahlberg N, Lonnstedt I, Lee NH, et al. (2004) Growth hormone-mediated alteration of fuel metabolism in the aged rat as determined from transcript profiles. Physiol Genomics 16: 261–267. doi: 10.1152/physiolgenomics.00093.2002