[1] | López-Bigas N, Ouzounis CA (2004) Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Research 32(10): 3108–3114. doi: 10.1093/nar/gkh605
|
[2] | Yang P, Li X, Wu M, Kwoh CK, Ng SK (2011) Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation. PLoS ONE 6(7): e21502. doi: 10.1371/journal.pone.0021502
|
[3] | Ala U, Piro RM, Grassi E, Damasco C, Silengo L, et al. (2008) Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis. PLoS Comput Biol 4(3): e1000043. doi: 10.1371/journal.pcbi.1000043
|
[4] | Ideker T, Sharan R (2008) Protein networks in disease. Genome Research 18: 644–652. doi: 10.1101/gr.071852.107
|
[5] | Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically inherited diseases using data mining. Nature Genetics 313: 316–319. doi: 10.1038/ng895
|
[6] | Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human disease network. Proc Natl Acad Sci USA 104(21): 8685–8690. doi: 10.1073/pnas.0701361104
|
[7] | Brunner HG, Van Driel MA (2004) From syndrome families to functional genomics. Nat Rev Genet 5(7): 545–551. doi: 10.1038/nrg1383
|
[8] | Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating Genes and Protein Complexes with Disease via Network Propagation. Plos computational biology 6(1): e1000641. doi: 10.1371/journal.pcbi.1000641
|
[9] | Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard B (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6(1): 55.
|
[10] | Smalter A, Lei SF, Chen X (2007) Human Disease-gene Classification with Integrative Sequence-based and Topological Features of Protein-protein Interaction Networks. BIBM.
|
[11] | Radivojac P, Peng K, Clark WT, Peters BJ, Mohan A, et al. (2008) An integrated approach to inferring gene-disease associations in humans. Proteins 72(3): 1030–1037. doi: 10.1002/prot.21989
|
[12] | Mordelet F, Vert JP (2011) ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples. BMC Bioinformatics 12(1): 389. doi: 10.1186/1471-2105-12-389
|
[13] | Yang P, Li XL, Mei JP, Kwoh CK, Ng SK (2012) Positive-unlabeled learning for disease gene identification. Bioinformatics 28(20): 2640–2647. doi: 10.1093/bioinformatics/bts504
|
[14] | Liu T, Du X, Xu YD, Li M, Wang X (2011) Partially Supervised Text Classification with Multi-Level Examples. In AAAI.
|
[15] | Xu JZ, Li YJ (2006) Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22(22): 2800–2805. doi: 10.1093/bioinformatics/btl467
|
[16] | K?hler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. The American Journal of Human Genetics 82(4): 949–958. doi: 10.1016/j.ajhg.2008.02.013
|
[17] | Linghu B, Snitkin ES, Hu Z, Xia Y, DeLisi C (2009) Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biology 10(9): R91+.
|
[18] | Schlicker A, Lengauer T, Albrecht M (2010) Improving disease gene prioritization using the semantic similarity of Gene Ontology terms. Bioinformatics 26(18): i561–i567. doi: 10.1093/bioinformatics/btq384
|
[19] | Prasad TK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009) Human Protein Reference Database. Nucleic Acids Research 37: 767–772. doi: 10.1093/nar/gkn892
|
[20] | Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21(9): 2076–2082. doi: 10.1093/bioinformatics/bti273
|
[21] | Gene Ontology Consortium (2004) The gene ontology database and informatics resource. Nucleic Acid Res 32(1): 258–261. doi: 10.1093/nar/gkh036
|
[22] | Wang JZ, Du Z, Payattakool R, Philip SY, Chen CF (2007) A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10): 1274–1281. doi: 10.1093/bioinformatics/btm087
|
[23] | McKusick VA (2007) Mendelian Inheritance in Man and Its Online Version, OMIM. Am. J. Hum. Genet. 80: 588–604. doi: 10.1086/514346
|
[24] | Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. European Journal of Human Genetics 14(5): 535–542. doi: 10.1038/sj.ejhg.5201585
|
[25] | Flicek P, Amode MR, Barrel D (2011) Ensemble 2011. Nucleic Acids Res 39(S1): 800–806.
|
[26] | Deza E, Deza MM (2009) Encyclopedia of Distances. Springer Berline Heidelberg.
|
[27] | LOVáSZ L (1993) Random walks on graphs: a survey. Combinatorics: Paul Erd?s is Eighty 2: 1–46.
|
[28] | Vapnik V (1998) Statistical Learning Theory. Wiley, New York.
|
[29] | Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3): 27. doi: 10.1145/1961189.1961199
|
[30] | Mitchell TM (1997) Artificial neural network. Machine Learning 81–127.
|
[31] | Kuncheva LI (2004). Combining pattern classifiers: methods and algorithms. John Wiley & Sons.
|
[32] | Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, et al. (2012) Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125(9): 1134–1146. doi: 10.1161/circulationaha.111.078212
|
[33] | Tabassum R, Mahajan A, Chauhan G, Dwivedi OP, Ghosh S, et al. (2010) Evaluation of DOK5 as a susceptibility gene for type 2 diabetes and obesity in North Indian population. BMC Medical Genetics 11: 35. doi: 10.1186/1471-2350-11-35
|
[34] | Palaniappan S, Awang R (2008) Intelligent heart disease prediction system using data mining techniques. In Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference pp.108–115.
|
[35] | Mei JP, Kwoh CK, Yang P, Li XL, Zheng J (2013) Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2): 238–245. doi: 10.1093/bioinformatics/bts670
|
[36] | Mei JP, Kwoh CK, Yang P, Li XL, Zheng J (2012). Globalized bipartite local model for drug-target interaction prediction. In Proceedings of the 11th International Workshop on Data Mining in Bioinformatics. pp. 8–14.
|