6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages. 1. Introduction Isothiocyanates (ITCs) are a group of naturally occurring sulfur compounds containing –N=C=S functional group, available often abundantly from many cruciferous vegetables. ITCs are stored as glucosinolate precursors in the plants. The damage of plant tissue such as chopping and mastication activates myrosinase which hydrolyses the glucosinolate (myrosinase-glucosinolate system), and the resultant ITCs play a key role in the defense against herbivores and pathogens [1, 2]. There are a significant number of naturally occurring and synthetic ITCs, and numerous studies have demonstrated the chemopreventive and anti-inflammatory properties of ITCs in vitro and in vivo [3–5]. Accumulating evidence suggests that ITCs exert their effects through a variety of signaling pathways involved in detoxification, inflammation, apoptosis, and cell cycle regulation, among others [4–6]. Wasabi (Wasabia japonica) is a member of the Brassicaceae family of vegetables, and its rhizome is a very popular pungent spice in Japan. Several studies have shown that wasabi has multiple physiological functions, such as appetite enhancement [7], antimicrobial activity [8], inhibition of platelet aggregation [9], and the suppression of N-methyl- -nitro-N-nitrosoguanidine-induced rat gastric carcinogenesis [10]. Wasabi differs from other Brassicaceae species in that it contains higher concentration of ITCs, especially long-chain ITCs. The bioactive components of wasabi have
References
[1]
L. Rask, E. Andréasson, B. Ekbom, S. Eriksson, B. Pontoppidan, and J. Meijer, “Myrosinase: gene family evolution and herbivore defense in Brassicaceae,” Plant Molecular Biology, vol. 42, no. 1, pp. 93–113, 2000.
[2]
R. J. Hopkins, N. M. Van Dam, and J. J. A. Van Loon, “Role of glucosinolates in insect-plant relationships and multitrophic interactions,” Annual Review of Entomology, vol. 54, pp. 57–83, 2009.
[3]
K. J. Woo and T. K. Kwon, “Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter,” International Immunopharmacology, vol. 7, no. 13, pp. 1776–1783, 2007.
[4]
Y. Zhang, “The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates,” Carcinogenesis, vol. 33, no. 1, pp. 2–9, 2012.
[5]
S. L. Navarro, F. Li, and J. W. Lampe, “Mechanisms of action of isothiocyanates in cancer chemoprevention: an update,” Food & Function, vol. 2, no. 10, pp. 579–587, 2011.
[6]
K. L. Cheung and A. N. Kong, “Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention,” AAPS Journal, vol. 12, no. 1, pp. 87–97, 2010.
[7]
M. Kojima, “Pungent components and functional ingredient of wasabi,” Food Process, vol. 23, pp. 32–35, 1988.
[8]
K. Isshiki and K. Tokuoka, “Allyl isothiocyanate and wholesomeness of food,” Japanese Journal of Food Microbiology, vol. 12, pp. 1–6, 1993.
[9]
H. Kumagai, N. Kashima, T. Seki, H. Sakurai, K. Ishii, and T. Ariga, “Analysis of volatile components in essential oil of upland Wasabi and their inhibitory effects on platelet aggregation,” Bioscience, Biotechnology and Biochemistry, vol. 58, no. 12, pp. 2131–2135, 1994.
[10]
N. Tanida, A. Kawaura, A. Takahashi, K. Sawada, and T. Shimoyama, “Suppressive effect of Wasabi (pungent Japanese spice) on gastric carcinogenesis induced by MNNG in rats,” Nutrition and Cancer, vol. 16, no. 1, pp. 53–58, 1991.
[11]
T. Uto, M. Fujii, and D. X. Hou, “Inhibition of lipopolysaccharide-induced cyclooxygenase-2 transcription by 6-(methylsulfinyl) hexyl isothiocyanate, a chemopreventive compound from Wasabia japonica (Miq.) Matsumura, in mouse macrophages,” Biochemical Pharmacology, vol. 70, no. 12, pp. 1772–1784, 2005.
[12]
T. Uto, M. Fujii, and D. X. Hou, “6-(Methylsulfinyl)hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages,” Biochemical Pharmacology, vol. 70, no. 8, pp. 1211–1221, 2005.
[13]
T. Uto, M. Fujii, and D. X. Hou, “Effects of 6-(methylsulfinyl)hexyl isothiocyanate on cyclooxygenase-2 expression induced by lipopolysaccharide, interferon-gamma and 12-O-tetradecanoylphorbol-13-acetate,” Oncology Reports, vol. 17, no. 1, pp. 233–238, 2007.
[14]
N. Hasegawa, Y. Matsumoto, A. Hoshino, and K. Iwashita, “Comparison of effects of Wasabia japonica and allyl isothiocyanate on the growth of four strains of Vibrio parahaemolyticus in lean and fatty tuna meat suspensions,” International Journal of Food Microbiology, vol. 49, no. 1-2, pp. 27–34, 1999.
[15]
Y. Morimitsu, K. Hayashi, Y. Nakagawa et al., “Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, Wasabi,” Mechanisms of Ageing and Development, vol. 116, no. 2-3, pp. 125–134, 2000.
[16]
D. X. Hou, M. Fukuda, M. Fujii, and Y. Fuke, “Induction of NADPH:quinone oxidoreductase in murine hepatoma cells by methylsulfinyl isothiocyanates: methyl chain length-activity study,” International Journal of Molecular Medicine, vol. 6, no. 4, pp. 441–444, 2000.
[17]
D. X. Hou, M. Fukuda, M. Fujii, and Y. Fuke, “Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim),” Cancer Letters, vol. 161, no. 2, pp. 195–200, 2000.
[18]
D. X. Hou, Y. Korenori, S. Tanigawa et al., “Dynamics of Nrf2 and Keap1 in ARE-mediated NQO1 expression by wasabi 6-(methylsulfinyl)hexyl isothiocyanate,” Journal of Agricultural and Food Chemistry, vol. 59, no. 22, pp. 11975–11882.
[19]
K. Ina, H. Ina, M. Ueda, A. Yagi, and I. Kishima, “ω-Methylthioalkyl isothiocyanates in Wasabi,” Agricultural Biology and Chemistry, vol. 53, no. 2, pp. 537–538, 1989.
[20]
H. Etoh, A. Nishimura, R. Takasawa, et al., “ω-Methylsulfinylalkyl isothiocyanates in wasabi, Wasabia japonica Matsum,” Agricultural Biology and Chemistry, vol. 54, no. 6, pp. 1587–1589, 1990.
[21]
M. Hara, K. Mochizuki, S. Kaneko et al., “Changes in pungent components of two Wasabia japonica Matsum. cultivars during the cultivation period,” Food Science and Technology Research, vol. 9, no. 3, pp. 288–291, 2003.
[22]
H. Ono, K. Adachi, Y. Fuke, and K. Shinohara, “Purification and structural analysis of substances in wasabi (Eutrema wasabi maxim.) that suppress the growth of MKN-28 human stomach cancer cells,” Nippon Shokuhin Kagaku Kogaku Kaishi, vol. 43, no. 10, pp. 1092–1097, 1996.
[23]
Y. Morimitsu, Y. Nakagawa, K. Hayashi et al., “A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway,” The Journal of Biological Chemistry, vol. 277, no. 5, pp. 3456–3463, 2002.
[24]
M. D. Maines, “The heme oxygenase system: a regulator of second messenger gases,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 517–554, 1997.
[25]
L. Boscá, M. Zeini, P. G. Través, and S. Hortelano, “Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate,” Toxicology, vol. 208, no. 2, pp. 249–258, 2005.
[26]
Z. Zhu, S. Zhong, and Z. Shen, “Targeting the inflammatory pathways to enhance chemotherapy of cancer,” Cancer Biology and Therapy, vol. 12, no. 2, pp. 95–105, 2011.
[27]
B. Hinz and K. Brune, “Cyclooxygenase-2–0 years later,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 2, pp. 367–375, 2002.
[28]
R. G. Molloy, J. A. Mannick, and M. L. Rodrick, “Cytokines, sepsis and immunomodulation,” British Journal of Surgery, vol. 80, no. 3, pp. 289–297, 1993.
[29]
C. D. Funk, L. B. Funk, M. E. Kennedy, A. S. Pong, and G. A. Fitzgerald, “Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment,” FASEB Journal, vol. 5, no. 9, pp. 2304–2312, 1991.
[30]
S. L. Hempel, M. M. Monick, and G. W. Hunninghake, “Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes,” Journal of Clinical Investigation, vol. 93, no. 1, pp. 391–396, 1994.
[31]
L. J. Crofford, R. L. Wilder, A. P. Ristimaki et al., “Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1β, phorbol ester, and corticosteroids,” Journal of Clinical Investigation, vol. 93, no. 3, pp. 1095–1101, 1994.
[32]
J. R. Mestre, P. J. Mackrell, D. E. Rivadeneira, P. P. Stapleton, T. Tanabe, and J. M. Daly, “Redundancy in the signaling pathways and promoter elements regulating cyclooxygenase-2 gene expression in endotoxin-treated macrophage/monocytic cells,” The Journal of Biological Chemistry, vol. 276, no. 6, pp. 3977–3982, 2001.
[33]
M. Caivano, B. Gorgoni, P. Cohen, and V. Poli, “The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein beta (C/EBP beta) and C/EBP delta transcription factors,” The Journal of Biological Chemistry, vol. 276, no. 52, pp. 48693–48701, 2001.
[34]
H. Inoue, C. Yokoyama, S. Hara, Y. Tone, and T. Tanabe, “Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element,” The Journal of Biological Chemistry, vol. 270, no. 42, pp. 24965–24971, 1995.
[35]
H. Inoue, T. Nanayama, S. Hara, C. Yokoyama, and T. Tanabe, “The cyclic AMP response element plays an essential role in the expression of the human prostaglandin-endoperoxide synthase 2 gene in differentiated U937 monocytic cells,” FEBS Letters, vol. 350, no. 1, pp. 51–54, 1994.
[36]
H. Inoue and T. Tanabe, “Transcriptional role of the nuclear factor κB site in the induction by lipopolysaccharide and suppression by dexamethasone of cyclooxygenase-2 in U937 cells,” Biochemical and Biophysical Research Communications, vol. 244, no. 1, pp. 143–148, 1998.
[37]
S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide: physiology, pathophysiology, and pharmacology,” Pharmacological Reviews, vol. 43, no. 2, pp. 109–142, 1991.
[38]
W. K. Alderton, C. E. Cooper, and R. G. Knowles, “Nitric oxide synthases: structure, function and inhibition,” Biochemical Journal, vol. 357, no. 3, pp. 593–615, 2001.
[39]
K. D. Kr?ncke, K. Fehsel, and V. Kolb-Bachofen, “Inducible nitric oxide synthase in human diseases,” Clinical and Experimental Immunology, vol. 113, no. 2, pp. 147–156, 1998.
[40]
R. B. Lorsbach, W. J. Murphy, C. J. Lowenstein, S. H. Snyder, and S. W. Russell, “Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-γ and lipopolysaccharide,” The Journal of Biological Chemistry, vol. 268, no. 3, pp. 1908–1913, 1993.
[41]
R. Korhonen, A. Lahti, H. Kankaanranta, and E. Moilanen, “Nitric oxide production and signaling in inflammation,” Current Drug Targets, vol. 4, no. 4, pp. 471–479, 2005.
[42]
H. Ohshima and H. Bartsch, “Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis,” Mutation Research, vol. 305, no. 2, pp. 253–264, 1994.
[43]
R. M. J. Palmer, D. S. Ashton, and S. Moncada, “Vascular endothelial cells synthesize nitric oxide from L-arginine,” Nature, vol. 333, no. 6174, pp. 664–666, 1988.
[44]
C. Nathan and Q. W. Xie, “Nitric oxide synthases: roles, tolls, and controls,” Cell, vol. 78, no. 6, pp. 915–918, 1994.
[45]
Y. Kobayashi, “The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1157–1162, 2010.
[46]
J. MacMicking, Q. W. Xie, and C. Nathan, “Nitric oxide and macrophage function,” Annual Review of Immunology, vol. 15, pp. 323–350, 1997.
[47]
H. Maeda and T. Akaike, “Nitric oxide and oxygen radicals in infection, inflammation and cancer,” Biochemistry (Moscow), vol. 63, no. 7, pp. 854–865, 1998.
[48]
P. K. Lala and C. Chakraborty, “Role of nitric oxide in carcinogenesis and tumour progression,” The Lancet Oncology, vol. 2, no. 3, pp. 149–156, 2001.
[49]
T. Noshita, Y. Kidachi, H. Funayama, H. Kiyota, H. Yamaguchi, and K. Ryoyama, “Anti-nitric oxide production activity of isothiocyanates correlates with their polar surface area rather than their lipophilicity,” European Journal of Medicinal Chemistry, vol. 44, no. 12, pp. 4931–4936, 2009.
[50]
A. D. Luster, “Mechanisms of disease: chemokines—chemotactic cytokines that mediate inflammation,” The New England Journal of Medicine, vol. 338, no. 7, pp. 436–445, 1998.
[51]
J. Chen, T. Uto, S. Tanigawa, T. Yamada-Kato, M. Fujii, and D. X. Hou, “Microarray-based determination of anti-inflammatory genes targeted by 6-(methylsulfinyl)hexyl isothiocyanate in macrophages,” Experimental and Therapeutic Medicine, vol. 1, no. 1, pp. 33–40, 2010.
[52]
C. Tsatsanis, A. Androulidaki, M. Venihaki, and A. N. Margioris, “Signalling networks regulating cyclooxygenase-2,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 10, pp. 1654–1661, 2006.
[53]
P. Huang, J. Han, and L. Hui, “MAPK signaling in inflammation-associated cancer development,” Protein and Cell, vol. 1, no. 3, pp. 218–226, 2010.
[54]
S. K. Dower and E. E. Qwarnstrom, “Signalling networks, inflammation and innate immunity,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1462–1471, 2003.
[55]
T. C. Hsu, M. R. Young, J. Cmarik, and N. H. Colburn, “Activator protein 1 (AP-1)- and nuclear factor κB (NF-κB)-dependent transcriptional events in carcinogenesis,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1338–1348, 2000.
[56]
A. K. Lee, S. H. Sung, Y. C. Kim, and S. G. Kim, “Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-α and COX-2 expression by sauchinone effects on I-κBα phosphorylation, C/EBP and AP-1 activation,” British Journal of Pharmacology, vol. 139, no. 1, pp. 11–20, 2003.
[57]
B. Thomas, F. Berenbaum, L. Humbert et al., “Critical role of C/EBPδ and C/EBPβ factors in the stimulation of the cyclooxygenase-2 gene transcription by interleukin-1β in articular chondrocytes,” European Journal of Biochemistry, vol. 267, no. 23, pp. 6798–6809, 2000.
[58]
F. D'Acquisto, T. Iuvone, L. Rombolà, L. Sautebin, M. Di Rosa, and R. Carnuccio, “Involvement of NF-κB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages,” FEBS Letters, vol. 418, no. 1-2, pp. 175–178, 1997.
[59]
K. Subbaramaiah, P. A. Cole, and A. J. Dannenberg, “Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms,” Cancer Research, vol. 62, no. 9, pp. 2522–2530, 2002.
[60]
A. G. Eliopoulos, C. D. Dumitru, C. C. Wang, J. Cho, and P. N. Tsichlis, “Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals,” EMBO Journal, vol. 21, no. 18, pp. 4831–4840, 2002.
[61]
Y. H. Cho, C. H. Lee, and S. G. Kim, “Potentiation of lipopolysaccharide-inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein β in macrophages,” Molecular Pharmacology, vol. 63, no. 3, pp. 512–523, 2003.
[62]
M. Hecker, C. Prei?, and V. B. Schini-Kerth, “Induction by staurosporine of nitric oxide synthase expression in vascular smooth muscle cells: role of NF-κB, CREB and C/EBPβ,” British Journal of Pharmacology, vol. 120, no. 6, pp. 1067–1074, 1997.
[63]
J. Marks-Konczalik, S. C. Chu, and J. Moss, “Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor κB-binding sites,” The Journal of Biological Chemistry, vol. 273, no. 35, pp. 22201–22208, 1998.
[64]
Q. W. Xie, Y. Kashiwabara, and C. Nathan, “Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase,” The Journal of Biological Chemistry, vol. 269, no. 7, pp. 4705–4708, 1994.
[65]
C. S. Kim, T. Kawada, B. S. Kim et al., “Capsaicin exhibits anti-inflammatory property by inhibiting IκB-α degradation in LPS-stimulated peritoneal macrophages,” Cellular Signalling, vol. 15, no. 3, pp. 299–306, 2003.
[66]
Y. C. Liang, Y. T. Huang, S. H. Tsai, S. Y. Lin-Shiau, C. F. Chen, and J. K. Lin, “Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages,” Carcinogenesis, vol. 20, no. 10, pp. 1945–1952, 1999.
[67]
K. Imada and W. J. Leonard, “The Jak-STAT pathway,” Molecular Immunology, vol. 37, no. 1-2, pp. 1–11, 2000.
[68]
P. Kovarik, M. Mangold, K. Ramsauer et al., “Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression,” EMBO Journal, vol. 20, no. 1-2, pp. 91–100, 2001.
[69]
R. W. Ganster, B. S. Taylor, L. Shao, and D. A. Geller, “Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8638–8643, 2001.
[70]
Z. Wen, Z. Zhong, and J. E. Darnell Jr., “Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation,” Cell, vol. 82, no. 2, pp. 241–250, 1995.
[71]
Y. Zhang, P. Talalay, C. G. Cho, and G. H. Posner, “A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 6, pp. 2399–2403, 1992.
[72]
T. Nomura, S. Shinoda, T. Yamori et al., “Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro,” Cancer Detection and Prevention, vol. 29, no. 2, pp. 155–160, 2005.
[73]
S. L?hr, C. Jacobi, A. Johann, G. Gottschalk, and A. De Meijere, “Cyclopropyl building blocks in organic synthesis, 57—convenient syntheses and biological activity of novel ω-trans-(bicyclopropyl)-and ω-(bicyclopropylidenyl)-substituted fatty acids and their derivatives,” European Journal of Organic Chemistry, no. 17, pp. 2979–2989, 2000.
[74]
T. J. Ding, L. Zhou, and X. P. Cao, “A facile and green synthesis of sulforaphane,” Chinese Chemical Letters, vol. 17, no. 9, pp. 1152–1154, 2006.
[75]
Y. Zhang and P. Talalay, “Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes,” Cancer Research, vol. 58, no. 20, pp. 4632–4639, 1998.
[76]
Y. Zhang, “Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells,” Carcinogenesis, vol. 21, no. 6, pp. 1175–1182, 2000.
[77]
L. Mi, A. J. Di Pasqua, and F. L. Chung, “Proteins as binding targets of isothiocyanates in cancer prevention,” Carcinogenesis, vol. 32, no. 10, pp. 1405–1413, 2011.
[78]
S. M. Deneke and B. L. Fanburg, “Regulation of cellular glutathione,” American Journal of Physiology, vol. 257, no. 4, pp. L163–L173, 1989.
[79]
I. A. Cotgreave and R. G. Gerdes, “Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?” Biochemical and Biophysical Research Communications, vol. 242, no. 1, pp. 1–9, 1998.
[80]
I. Rahman and W. MacNee, “Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1405–1420, 2000.