全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Bacterial Magnetosome Biomineralization - A Novel Platform to Study Molecular Mechanisms of Human CDF-Related Type-II Diabetes

DOI: 10.1371/journal.pone.0097154

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all organisms. CDFs were found to be involved in numerous human health conditions, such as Type-II diabetes and neurodegenerative diseases. In this work, we established the magnetite biomineralizing alphaproteobacterium Magnetospirillum gryphiswaldense as an effective model system to study CDF-related Type-II diabetes. Here, we introduced two ZnT-8 Type-II diabetes-related mutations into the M. gryphiswaldense MamM protein, a magnetosome-associated CDF transporter essential for magnetite biomineralization within magnetosome vesicles. The mutations' effects on magnetite biomineralization and iron transport within magnetosome vesicles were tested in vivo. Additionally, by combining several in vitro and in silico methodologies we provide new mechanistic insights for ZnT-8 polymorphism at position 325, located at a crucial dimerization site important for CDF regulation and activation. Overall, by following differentiated, easily measurable, magnetism-related phenotypes we can utilize magnetotactic bacteria for future research of CDF-related human diseases.

References

[1]  Alberts IL, Nadassy K, Wodak SJ (1998) Analysis of zinc binding sites in protein crystal structures. Protein Sci 7: 1700–1716. doi: 10.1002/pro.5560070805
[2]  Outten CE, O′Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292: 2488–2492. doi: 10.1126/science.1060331
[3]  Paulsen IT, Saier MHJ (1997) A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins. J Membr Biol 156: 99–103. doi: 10.1007/s002329900192
[4]  Anton A, Groβe C, Reiβmann J, Nies DH, Pribyl T (1999) CzcD Is a Heavy Metal Ion Transporter Involved in Regulation of Heavy Metal Resistance in Ralstonia sp. Strain CH34 These include: CzcD Is a Heavy Metal Ion Transporter Involved in Regulation of Heavy Metal Resistance in Ralstonia sp. Strain CH34. J Bacteriol 181: 6876–6881.
[5]  Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes Encoding Proteins of the Cation Diffusion Facilitator Family That Confer Manganese Tolerance. The Plant Cell 15: 1131–1142. doi: 10.1105/tpc.009134
[6]  Grass G, Otto M, Fricke B, Haney CJ, Rensing C, et al. (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183: 9–18. doi: 10.1007/s00203-004-0739-4
[7]  Munkelt D, Grass G, Nies DH (2004) The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metallidurans CH34 Are Transporters of Broad Metal Specificity The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metall. J Bacteriol 186: 8036–8043. doi: 10.1128/jb.186.23.8036-8043.2004
[8]  Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98: 9995–10000. doi: 10.1073/pnas.171039798
[9]  Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32: 215–226. doi: 10.1007/s10295-005-0224-3
[10]  Etzion Y, Ganiel A, Beharier O, Shalev A, Novack V, et al. (2008) Correlation between atrial ZnT-1 expression and atrial fibrillation in humans: a pilot study. J Cardiovasc Electrophysiol 19: 157–164. doi: 10.1111/j.1540-8167.2007.01008.x
[11]  Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS One 7: e33211. doi: 10.1371/journal.pone.0033211
[12]  Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, et al. (2012) Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet 90: 467–477. doi: 10.1016/j.ajhg.2012.01.017
[13]  Tuschl K, Clayton PT, Gospe SM, Gulab S, Ibrahim S, et al. (2012) Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet 90: 457–466. doi: 10.1016/j.ajhg.2012.01.018
[14]  Jiang F, Li Q, Hu C, Zhang R, Wang CR, et al. (2012) Association of a SLC30A8 genetic variant with monotherapy of repaglinide and rosiglitazone effect in newly diagnosed type 2 diabetes patients in China. Biomed Environ Sci 25: 23–29.
[15]  Nicolson T, Bellomo E, Wijesekara N (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes–associated variants. Diabetes 58: 2070–2083. doi: 10.2337/db09-0551
[16]  Lu M, Chai J, Fu D (2009) Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 16: 1063–1067. doi: 10.1038/nsmb.1662
[17]  Coudray N, Valvo S, Hu M, Lasala R, Kim C, et al.. (2013) Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A.
[18]  Higuchi T, Hattori M, Tanaka Y, Ishitani R, Nureki O (2009) Crystal structure of the cytosolic domain of the cation diffusion facilitator family protein. Proteins 76: 768–771. doi: 10.1002/prot.22444
[19]  Cherezov V, H?fer N, Szebenyi DME, Kolaj O, Wall JG, et al. (2008) Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. Structure 16: 1378–1388. doi: 10.1016/j.str.2008.05.014
[20]  Zeytuni N, Uebe R, Maes M, Davidov G, Baram M, et al. (2014) Cation Diffusion Facilitators Transport Initiation and Regulation is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain. PLoS One 9(3): e92141. doi: 10.1371/journal.pone.0092141
[21]  Schüler D (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol 181: 1–7. doi: 10.1007/s00203-003-0631-7
[22]  Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci U S A 107: 5593–5598. doi: 10.1073/pnas.0914439107
[23]  Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, et al. (2011) The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol 82: 818–835. doi: 10.1111/j.1365-2958.2011.07863.x
[24]  Jogler C, Schüler D (2009) Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol 63: 501–521. doi: 10.1146/annurev.micro.62.081307.162908
[25]  Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108: 4875–4898. doi: 10.1021/cr078258w
[26]  Hattori M, Tanaka Y, Ishitani R, Nureki O (2007) Crystallization and preliminary X-ray diffraction analysis of the cytosolic domain of a cation diffusion facilitator family protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 63: 771–773. doi: 10.1107/s1744309107038948
[27]  Lu M, Fu D (2007) Structure of the zinc transporter YiiP. Science 317: 1746–1748. doi: 10.1126/science.1143748
[28]  Schüler D, Uhl R, B?uerlein E (1995) A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol Lett 132: 139–145. doi: 10.1111/j.1574-6968.1995.tb07823.x
[29]  Zeytuni N, Offer T, Davidov G, Zarivach R (2012) Crystallization and preliminary crystallographic analysis of the C-terminal domain of MamM, a magnetosome-associated protein from Magnetospirillum gryphiswaldense MSR-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 927–930. doi: 10.1107/s1744309112025638
[30]  Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, et al. (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci U S A 108: E480–487. doi: 10.1073/pnas.1103367108
[31]  Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr Pt A 276: 307–326. doi: 10.1016/s0076-6879(97)76066-x
[32]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[33]  Vagin AA, Steiner RS, Lebedev AA, Potterton L, McNicholas S, et al. (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60: 2184–2195. doi: 10.1107/s0907444904023510
[34]  DeLano WL (2002) The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos) 0.99.
[35]  Guex N, Peitsch M (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. doi: 10.1002/elps.1150181505
[36]  Uebe R, Voigt B, Schweder T, Albrecht D, Katzmann E, et al. (2010) Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J Bacteriol 192: 4192–4204. doi: 10.1128/jb.00319-10
[37]  Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 77: 208–224. doi: 10.1111/j.1365-2958.2010.07202.x
[38]  Miller Y, Ma B, Nussinov R (2010) Zinc ions promote Alzheimer Aβ aggregation via population shift of polymorphic states. Proc Natl Acad Sci U S A 107: 9490–9495. doi: 10.1073/pnas.0913114107
[39]  Miller Y, Ma B, Nussinov R (2011) Synergistic interactions between repeats in tau protein and Aβ amyloids may be responsible for accelerated aggregation via polymorphic states. Biochemistry 50: 5172–5181. doi: 10.1021/bi200400u
[40]  Raz Y, Miller Y (2013) Interactions between Aβ and mutated Tau lead to polymorphism and induce aggregation of Aβ-mutated tau oligomeric complexes. PLoS One 8: e73303. doi: 10.1371/journal.pone.0073303
[41]  Raz Y, Adler J, Vogel A, Scheidt HA, H?upl T, et al.. (2013) The Influence of the ΔK280 Mutation and N- or C- Terminal Extensions on the Structure, Dynamics, and Fibril Morphology of the Tau R2 Repeat. Phys Chem Chem Phys.
[42]  Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, et al. (1999) NAMD2: Greater scalability for parallel molecular dynamics. J Comput Phys 151: 283–312. doi: 10.1006/jcph.1999.6201
[43]  Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, et al. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4: 187–217. doi: 10.1002/jcc.540040211
[44]  Mackerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, et al. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins ?. 5647: 3586–3616. doi: 10.1021/jp973084f
[45]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926. doi: 10.1063/1.445869
[46]  Mahoney MW, Jorgensen WL (2001) Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. J Chem Phys 115: 10758. doi: 10.1063/1.1418243
[47]  Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: The Langevin piston method. J Chem Phys 103: 4613–4621. doi: 10.1063/1.470648
[48]  Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101: 4177–4189. doi: 10.1063/1.467468
[49]  Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, et al. (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8593. doi: 10.1063/1.470117
[50]  Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133