全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile

DOI: 10.1371/journal.pone.0097195

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

References

[1]  Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404: 661–671.
[2]  Williams G, Bing C, Cai XJ, Harrold JA, King PJ, et al. (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiology & behavior 74: 683–701. doi: 10.1016/s0031-9384(01)00612-6
[3]  Woods SC, D'Alessio DA (2008) Central control of body weight and appetite. The Journal of clinical endocrinology and metabolism 93: S37–50. doi: 10.1210/jc.2008-1630
[4]  Lopez M, Lelliott CJ, Vidal-Puig A (2007) Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. Bioessays 29: 248–261. doi: 10.1002/bies.20539
[5]  Gao S, Kinzig KP, Aja S, Scott KA, Keung W, et al. (2007) Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America 104: 17358–17363. doi: 10.1073/pnas.0708385104
[6]  Lopez M, Lage R, Saha AK, Perez-Tilve D, Vazquez MJ, et al. (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell metabolism 7: 389–399. doi: 10.1016/j.cmet.2008.03.006
[7]  Hu Z, Dai Y, Prentki M, Chohnan S, Lane MD (2005) A role for hypothalamic malonyl-CoA in the control of food intake. The Journal of biological chemistry 280: 39681–39683. doi: 10.1074/jbc.c500398200
[8]  Hu Z, Cha SH, Chohnan S, Lane MD (2003) Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proceedings of the National Academy of Sciences of the United States of America 100: 12624–12629. doi: 10.1073/pnas.1834402100
[9]  Loftus TM (2000) Reduced Food Intake and Body Weight in Mice Treated with Fatty Acid Synthase Inhibitors. Science 288: 2379–2381. doi: 10.1126/science.288.5475.2379
[10]  Lopez M, Lelliott CJ, Tovar S, Kimber W, Gallego R, et al. (2006) Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA. Diabetes 55: 1327–1336. doi: 10.2337/db05-1356
[11]  López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, et al. (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell metabolism 7: 389–399.
[12]  Gao S, Casals N, Keung W, Moran TH, Lopaschuk GD (2013) Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiology & behavior 118: 165–170. doi: 10.1016/j.physbeh.2013.03.030
[13]  McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. European journal of biochemistry/FEBS 244: 1–14. doi: 10.1111/j.1432-1033.1997.00001.x
[14]  Obici S, Feng Z, Morgan K, Stein D, Karkanias G, et al. (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51: 271–275.
[15]  Obici S, Feng Z, Arduini A, Conti R, Rossetti L (2003) Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature medicine 9: 756–761. doi: 10.1038/nm873
[16]  Pocai A, Lam TK, Obici S, Gutierrez-Juarez R, Muse ED, et al. (2006) Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. The Journal of clinical investigation 116: 1081–1091. doi: 10.1172/jci26640
[17]  Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE (2004) Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 53: 549–559. doi: 10.2337/diabetes.53.3.549
[18]  Sierra AY, Gratacos E, Carrasco P, Clotet J, Urena J, et al. (2008) CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. The Journal of biological chemistry 283: 6878–6885. doi: 10.1074/jbc.m707965200
[19]  Price N, van der Leij F, Jackson V, Corstorphine C, Thomson R, et al. (2002) A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics. 80: 433–442. doi: 10.1006/geno.2002.6845
[20]  Gao S, Zhu G, Gao X, Wu D, Carrasco P, et al. (2011) Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proceedings of the National Academy of Sciences of the United States of America 108(23): 9691–9696. doi: 10.1073/pnas.1103267108
[21]  Ramirez S, Martins L, Jacas J, Carrasco P, Pozo M, et al. (2013) Hypothalamic ceramide levels regulated by CPT1C mediate the orexigenic effect of ghrelin. Diabetes.
[22]  Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, et al. (2008) UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454: 846–851. doi: 10.1038/nature07181
[23]  Varela L, Vázquez MJ, Cordido F, Nogueiras R, Vidal-Puig A, et al. (2011) Ghrelin and lipid metabolism: key partners in energy balance. Journal of molecular endocrinology 46: R43–63. doi: 10.1677/jme-10-0068
[24]  Lage R, Vazquez MJ, Varela L, Saha AK, Vidal-Puig A, et al. (2010) Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. Faseb J 24: 2670–2679. doi: 10.1096/fj.09-150672
[25]  Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. Embo J 19: 1290–1300. doi: 10.1093/emboj/19.6.1290
[26]  King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiology & behavior 87: 221–244. doi: 10.1016/j.physbeh.2005.10.007
[27]  Sternson SM, Shepherd GMG, Friedman JM (2005) Topographic mapping of VMH —> arcuate nucleus microcircuits and their reorganization by fasting. Nature neuroscience 8: 1356–1363. doi: 10.1038/nn1550
[28]  Jo YH (2012) Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus. Journal of neurophysiology 107: 42–49. doi: 10.1152/jn.00353.2011
[29]  Gao S, Serra D, Keung W, Hegardt FG, Lopaschuk GD (2013) Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. Am J Physiol Endocrinol Metab.
[30]  Morillas M, Gomez-Puertas P, Bentebibel A, Selles E, Casals N, et al. (2003) Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. The Journal of biological chemistry 278: 9058–9063. doi: 10.1074/jbc.m209999200
[31]  Grimm D, Kern A, Rittner K, Kleinschmidt JA (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Human gene therapy 9: 2745–2760. doi: 10.1089/hum.1998.9.18-2745
[32]  Dentin R, Pegorier JP, Benhamed F, Foufelle F, Ferre P, et al. (2004) Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. The Journal of biological chemistry 279: 20314–20326. doi: 10.1074/jbc.m312475200
[33]  Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. San Diego; London: Academic. xxvi, [236]p. p.
[34]  Takamura Y, Kitayama Y, Arakawa A, Yamanaka S, Tosaki M, et al. (1985) Malonyl-CoA: acetyl-CoA cycling. A new micromethod for determination of acyl-CoAs with malonate decarboxylase. Biochimica et biophysica acta 834: 1–7. doi: 10.1016/0005-2760(85)90170-5
[35]  Mera P, Bentebibel A, Lopez-Vinas E, Cordente AG, Gurunathan C, et al. (2009) C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem Pharmacol 77: 1084–1095. doi: 10.1016/j.bcp.2008.11.020
[36]  Canals D, Mormeneo D, Fabrias G, Llebaria A, Casas J, et al. (2009) Synthesis and biological properties of Pachastrissamine (jaspine B) and diastereoisomeric jaspines. Bioorganic & medicinal chemistry 17: 235–241. doi: 10.1016/j.bmc.2008.11.026
[37]  Sakkou M, Wiedmer P, Anlag K, Hamm A, Seuntjens E, et al. (2007) A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell metabolism 5: 450–463. doi: 10.1016/j.cmet.2007.05.007
[38]  Sasaki T, Kitamura T (2010) Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocrine journal 57: 939–946. doi: 10.1507/endocrj.k10e-320
[39]  Nogueiras R, Tovar S, Mitchell SE, Rayner DV, Archer ZA, et al. (2004) Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes 53: 2552–2558. doi: 10.2337/diabetes.53.10.2552
[40]  Tarasenko A, Krupko O, Himmelreich N (2012) Reactive oxygen species induced by presynaptic glutamate receptor activation is involved in [(3)H]GABA release from rat brain cortical nerve terminals. Neurochemistry international 61: 1044–1051. doi: 10.1016/j.neuint.2012.07.021
[41]  Thai TP, Rodemer C, Jauch A, Hunziker A, Moser A, et al. (2001) Impaired membrane traffic in defective ether lipid biosynthesis. Human molecular genetics 10: 127–136. doi: 10.1093/hmg/10.2.127
[42]  Hetherington A, Ranson S (1942) The relation of various hypothalamic lesions to adiposity in the rat. J Comp NEurol 76: 475–499. doi: 10.1002/cne.900760308
[43]  Lane MD, Wolfgang M, Cha SH, Dai Y (2008) Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond) 32 Suppl 4S49–54. doi: 10.1038/ijo.2008.123
[44]  Swierczynski J, Goyke E, Korczynska J, Jankowski Z (2008) Acetyl-CoA carboxylase and fatty acid synthase activities in human hypothalamus. Neuroscience letters 444: 209–211. doi: 10.1016/j.neulet.2008.08.046
[45]  Choi YH, Fujikawa T, Lee J, Reuter A, Kim KW (2013) Revisiting the Ventral Medial Nucleus of the Hypothalamus: The Roles of SF-1 Neurons in Energy Homeostasis. Frontiers in neuroscience 7: 71. doi: 10.3389/fnins.2013.00071
[46]  Wittmann G, Hrabovszky E, Lechan RM (2013) Distinct glutamatergic and GABAergic subsets of hypothalamic pro-opiomelanocortin neurons revealed by in situ hybridization in male rats and mice. The Journal of comparative neurology 521: 3287–3302. doi: 10.1002/cne.23350
[47]  Sch?ne C, Burdakov D (2012) Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Frontiers in behavioral neuroscience 6: 81.
[48]  Delgado TC (2013) Glutamate and GABA in Appetite Regulation. Frontiers in endocrinology 4: 103. doi: 10.3389/fendo.2013.00103
[49]  van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76: 98–115. doi: 10.1016/j.neuron.2012.09.014
[50]  Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28: 7025–7030. doi: 10.1523/jneurosci.1954-08.2008
[51]  Tong Q, Ye C, McCrimmon RJ, Dhillon H, Choi B, et al. (2007) Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell metabolism 5: 383–393. doi: 10.1016/j.cmet.2007.04.001
[52]  López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, et al. (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature medicine 16: 1001–1008. doi: 10.1038/nm.2207
[53]  Martinez de Morentin PB, Whittle AJ, Ferno J, Nogueiras R, Dieguez C, et al. (2012) Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61: 807–817. doi: 10.2337/db11-1079
[54]  Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407: 908–913. doi: 10.1038/35038090
[55]  Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, et al. (2006) Ghrelin action in the brain controls adipocyte metabolism. The Journal of clinical investigation 116: 1983–1993. doi: 10.1172/jci25811
[56]  Sangiao-Alvarellos S, Vazquez MJ, Varela L, Nogueiras R, Saha AK, et al. (2009) Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology 150: 4562–4574. doi: 10.1210/en.2009-0482
[57]  Hu Z, Cha SH, van Haasteren G, Wang J, Lane MD (2005) Effect of centrally administered C75, a fatty acid synthase inhibitor, on ghrelin secretion and its downstream effects. Proceedings of the National Academy of Sciences of the United States of America 102: 3972–3977. doi: 10.1073/pnas.0500619102
[58]  Zhu W, Czyzyk D, Paranjape SA, Zhou L, Horblitt A, et al. (2010) Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. American journal of physiology 298: E971–977. doi: 10.1152/ajpendo.00749.2009
[59]  Wu Q, Palmiter RD (2011) GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. European journal of pharmacology 660: 21–27. doi: 10.1016/j.ejphar.2010.10.110
[60]  Kelly J, Rothstein J, Grossman SP (1979) GABA and hypothalamic feeding systems. I. Topographic analysis of the effects of microinjections of muscimol. Physiology & behavior 23: 1123–1134. doi: 10.1016/0031-9384(79)90306-8
[61]  Arduini A, Denisova N, Virmani A, Avrova N, Federici G, et al. (1994) Evidence for the involvement of carnitine-dependent long-chain acyltransferases in neuronal triglyceride and phospholipid fatty acid turnover. Journal of neurochemistry 62: 1530–1538. doi: 10.1046/j.1471-4159.1994.62041530.x
[62]  Schug ZT, Frezza C, Galbraith LC, Gottlieb E (2012) The music of lipids: how lipid composition orchestrates cellular behaviour. Acta oncologica (Stockholm, Sweden) 51: 301–310. doi: 10.3109/0284186x.2011.643823
[63]  Lundbaek JA (2006) Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein. J Phys Condens Matter 18: S1305–1344. doi: 10.1088/0953-8984/18/28/s13
[64]  Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, et al. (2006) Molecular anatomy of a trafficking organelle. Cell 127: 831–846. doi: 10.1016/j.cell.2006.10.030
[65]  Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nature reviews 2: 504–513. doi: 10.1038/35080071
[66]  du Bois TM, Deng C, Huang XF (2005) Membrane phospholipid composition, alterations in neurotransmitter systems and schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry 29: 878–888. doi: 10.1016/j.pnpbp.2005.04.034
[67]  Chang MC, Wisco D, Ewers H, Norden C, Winckler B (2006) Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Molecular and cellular neurosciences 31: 525–538. doi: 10.1016/j.mcn.2005.11.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133