全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Carrier-Based Common Mode Voltage Control Techniques in Three-Level Diode-Clamped Inverter

DOI: 10.1155/2012/327157

Full-Text   Cite this paper   Add to My Lib

Abstract:

Switching converters are used in electric drive applications to produce variable voltage, variable frequency supply which generates harmful large dv/dt and high-frequency common mode voltages (CMV). Multilevel inverters generate lower CMV as compared to conventional two-level inverters. This paper presents simple carrier-based technique to control the common mode voltages in multilevel inverters using different structures of sine-triangle comparison method such as phase disposition (PD), phase opposition disposition (POD) by adding common mode voltage offset signal to actual reference voltage signal. This paper also presented the method to optimize the magnitude of this offset signal to reduce CMV and total harmonic distortion in inverter output voltage. The presented techniques give comparable performance as obtained in complex space vector-based control strategy, in terms of number of commutations, magnitude, and rate of change of CMV and harmonic profile of inverter output voltage. Simulation and experimental results presented confirm the effectiveness of the proposed techniques to control the common mode voltages. 1. Introduction In the medium-voltage, high-power adjustable speed drive (ASD) system, AC supply is first converted into DC (known as DC buffer stage) and then converting back this DC into variable voltage variable frequency AC supply using inverter (voltage source or current source type). Figure 1 shows the general block diagram of AC-DC-AC induction motor drive system. The front-end converter may be uncontrolled or controlled voltage source or current source rectifier while the motor side converter can be conventional two-level or multilevel VSI, CSI. In VSI fed drive, the DC link capacitor ( and ) is sufficiently large and DC link inductor is not required whereas in CSI fed drive, is sufficiently large and is not needed [1, 2]. Figure 1: General block diagram of AC-DC-AC VSI or CSI fed ASD (only in CSI and only , in VSI). The DC buffer stage consists of only large capacitor in the case of voltage source inverter and only large inductor in the case of current source inverter. This process involves switching power semiconductors to manipulate the magnitude and frequency of the output waveforms. The switching action of rectifiers and inverters results in common mode voltages which are essentially zero-sequence voltages superimposed with switching noise which will appear at rectifier, inverter, and motor terminals [1, 2]. If not mitigated, they appear on the neutral of the stator winding with respect to ground, which should be zero when the

References

[1]  J. Pontt, J. Rodríguez, and R. Huerta, “Mitigation of noneliminated harmonics of SHEPWM three-level multipulse three-phase active front end converters with low switching frequency for meeting standard IEEE-519-92,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1594–1600, 2004.
[2]  D. A. Rendusara, E. Cengelci, P. N. Enjeti, V. R. Stefanovic, and J. W. Gray, “Analysis of common mode voltage-“Neutral shift” in medium voltage PWM adjustable speed drive (MV-ASD) systems,” IEEE Transactions on Power Electronics, vol. 15, no. 6, pp. 1124–1133, 2000.
[3]  J. Rodríguez, J. Pontt, P. Correa, P. Cortés, and C. Silva, “A new modulation method to reduce common-mode voltages in multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 834–839, 2004.
[4]  J. Rodríguez, J. Pontt, R. Huerta, and P. Newman, “24-pulse active front end rectifier with low switching frequency,” in Proceedings of the 35th IEEE Annual Power Electronics Specialists Conference (PESC '04), pp. 3517–3523, June 2004.
[5]  B. P. Schmitt and R. Sommer, “Retrofit of fixed speed induction motors with medium voltage drive converters using NPC three-level inverter high-voltage IGBT based topology,” in Proceedings of the IEEE International Symposium on Industrial Electronics Proceedings (ISIE '01), pp. 746–751, June 2001.
[6]  F. Wang, “Motor shaft voltages and bearing currents and their reduction in multilevel medium-voltage PWM voltage-source-inverter drive applications,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1336–1341, 2000.
[7]  A. Videt, P. Le Moigne, N. Idir, P. Baudesson, and X. Cimetière, “A new carrier-based PWM providing common-mode-current reduction and DC-bus balancing for three-level inverters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3001–3011, 2007.
[8]  F. Wang, “Sine-triangle versus space-vector modulation for three-level PWM voltage-source inverters,” IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 500–506, 2002.
[9]  A. K. Gupta and A. M. Khambadkone, “A space vector modulation scheme to reduce common mode voltage for cascaded multilevel inverters,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1672–1681, 2007.
[10]  R. S. Kanchan, P. N. Tekwani, and K. Gopakumar, “Three-level inverter scheme with common mode voltage elimination and dc link capacitor voltage balancing for an open-end winding induction motor drive,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1676–1683, 2006.
[11]  P. C. Loh, D. G. Holmes, Y. Fukuta, and T. A. Lipo, “A reduced common mode hysteresis current regulation strategy for multilevel inverters,” IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 192–200, 2004.
[12]  S. Wei, N. Zargari, B. Wu, and S. Rizzo, “Comparison and mitigation of common mode voltage in power converter topologies,” in Proceedings of the 39th IEEE Industry Applications Conference (IAS '04), pp. 1852–1857, October 2004.
[13]  H. Akagi and T. Hatada, “Voltage balancing control for a three-level diode-clamped converter in a medium-voltage transformerless hybrid active filter,” IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 571–579, 2009.
[14]  B. P. Mcgrath and D. G. Holmes, “A comparison of multicarrier PWM strategies for cascaded and neutral point clamped multilevel inverters,” in Proceedings of the IEEE Power Electronics Specialists Conference (PESC '00), vol. 2, pp. 647–679, November 2000.
[15]  B. P. McGrath and D. G. Holmes, “Multicarrier PWM strategies for multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 858–867, 2002.
[16]  B. P. McGrath, D. G. Holmes, and T. Lipo, “Optimized space vector switching sequences for multilevel inverters,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1293–1301, 2003.
[17]  P. K. Chaturvedi, S. Jain, and P. Agarwal, “A simple carrier based neutral point potential regulator for 3-level diode clamped inverter,” International Journal of Power Electronics, vol. 3, no. 1, pp. 1–25, 2011.
[18]  P. K. Chaturvedi, S. Jain, and P. Agarwal, “Reduced switching loss pulse width modulation technique for three-level diode clamped inverter,” IET Power Electronics, vol. 4, no. 4, pp. 393–399, 2011.
[19]  M. E. Adabi and A. Vahedi, “Common mode voltage reduction with a modified hysteresis current control strategy,” in Proceedings of the 2nd Power Electronics, Drive Systems and Technologies Conference (PEDSTC '11), pp. 415–420, February 2011.
[20]  Z. Zhao, Y. Zhong, H. Gao, L. Yuan, and T. Lu, “Hybrid selective harmonic elimination PWM for common mode voltage reduction in three-level neutral point clamped inverters for variable speed induction drives,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1152–1158, 2012.
[21]  P. C. Loh, D. G. Holmes, Y. Fukuta, and T. A. Lipo, “Reduced common-mode modulation strategies for cascaded multilevel inverters,” IEEE Transactions on Industry Applications, vol. 39, no. 5, pp. 1386–1395, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133