This paper is concerned with performance of the current shaping network in Average Current Mode (ACM) Active Power Factor Correction (APFC) systems. Theoretical expressions for the ripple components are derived. Then, ripple interaction and impact on the current loop reference signal are investigated. A modification of the controller network is suggested that results in an improved Total Harmonic Distortion (THD). Design guidelines are suggested. The theoretical predictions were validated by simulation. 1. Introduction Over the past few years, a variety of current shaping methodologies were developed for Active Power Factor Correction (APFC) [1–3]. Each approach undertaken is a compromise in between the performance indexes and the circuit complexity and cost. The Critical Conduction Mode (CrCM) APFC operating on the CCM-DCM boundary [4–7] shapes the average input current by comparator/zero detector and is unconditionally stable. However, the natural simplicity, robustness, and stability of CrCM APFC are offset by high ripple current which cause increased conduction and core losses. Difficulties in filtering the variable frequency current ripple and poor efficiency restrict this technique to low-power and low-cost applications. Other Discontinuous Conduction Mode (DCM) based designs, which upside is simplicity suffer from similar problems exhibiting also higher harmonic distortion of the line current [8, 9]. APFC without line voltage sensing, [10–13] stands out as a robust, technologically simple, and cost-effective solution. A simple and clear physical insight into the principle of operation of the current loop of this class of APFCs was suggested in [14]. All of the mentioned above APFCs with no input voltage sensing make use of a hidden current loop inside a DC-DC converter. The designs mainly differ in their method of realization of the transresistive feedback, PWM, and supplementary current loop control circuitry. Regardless of the implementation, however, the duty cycle programming is implemented according to the converters input port ideal average relationships and ideal modulator ramp signal. As a result, accurate current loop operation can only be attained in the Continuous Conduction Mode (CCM) under negligible current ripple conditions. In practice, however, the CCM-DCM mode changes, current ripple, and ramp carrier imperfections cause the duty cycle to deviate from the ideal relationship resulting in distortion in the average input current. The very proper average current mode three-loop APFC [15–18] achieves its control objectives by a
References
[1]
K. N. Sakthivel, S. K. Das, and K. R. Kini, “Importance of quality AC power distribution and understanding of EMC standards IEC, 61000-3-2, IEC, 61000-3-3 & IEC, 61000-3-11,” in Proceedings of the 8th International Conference on Electromagnetic Interference and Compatibility, pp. 423–430, 2003.
[2]
B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Transactions on Industrial Electronics, vol. 50, no. 5, pp. 962–981, 2003.
[3]
M. M. Jovanovi? and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications—an overview,” IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 701–708, 2005.
[4]
B. Andreycak, “Power factor correction using UC3852 controlled on-time zero current switching technique,” U-132 Application note, Unitrode Integrated Circuits.
[5]
M. Marvi and A. Fotowat-Ahmady, “A fully ZVS critical conduction mode boost PFC,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1958–1965, 2012.
[6]
T. F. Wu, J. R. Tsai, Y. M. Chen, and Z. H. Tsai, “Integrated circuits of a PFC controller for interleaved critical-mode boost converters,” in Proceedings of the 22nd Annual IEEE Applied Power Electronics Conference and Exposition (APEC '07), pp. 1347–1350, March 2007.
[7]
J. R. Tsai, T. F. Wu, C. Y. Wu, Y. M. Chen, and M. C. Lee, “Interleaving phase shifters for critical-mode boost PFC,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1348–1357, 2008.
[8]
K. De Gussemé, D. M. Van de Sype, A. P. M. Van den Bossche, and J. A. Melkebeek, “Input-current distortion of CCM boost PFC converters operated in DCM,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 858–865, 2007.
[9]
K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” in Proceedings of the 20th Annual IEEE Power Electronics Specialists Conference (PESC '89), pp. 825–829, June 1989.
[10]
D. Maksimovi?, Y. Jang, and R. W. Erickson, “Nonlinear-carrier control for high-power-factor boost rectifiers,” IEEE Transactions on Power Electronics, vol. 11, no. 4, pp. 578–584, 1996.
[11]
J. P. Gegner and C. Q. Lee, “Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode,” in Proceedings of the 27th Annual IEEE Power Electronics Specialists Conference (PESC '96), pp. 196–202, January 1996.
[12]
Z. Lai and K. M. Smedley, “Family of power-factor-correction controllers,” in Proceedings of the IEEE 12th Applied Power Electronics Conference (APEC '97), pp. 66–73, February 1997.
[13]
J. Rajagopalan, F. C. Lee, and P. Nora, “Generalized technique for derivation of average current mode control laws for power factor correction without input voltage sensing,” in Proceedings of the IEEE 12th Applied Power Electronics Conference, pp. 81–87, February 1997.
[14]
S. Ben-Yaakov and I. Zeltser, “The dynamics of a PWM boost converter with resistive input,” IEEE Transactions on Industrial Electronics, vol. 46, no. 3, pp. 613–619, 1999.
[15]
P. C. Todd, “UC3854 controlled power factor correction circuit design,” U-134 Application note, Unitrode Integrated Circuits.
[16]
J. B. Williams, “Design of feedback loop in unity power factor AC to DC converter,” in Proceedings of the 20th Annual IEEE Power Electronics Specialists Conference (PESC '89), pp. 959–967, June 1989.
[17]
L. H. Dixon, “High power factor preregulators for offline power supplies,” in Proceedings of the Unitrode Seminar, 1993.
[18]
L. H. Dixon, “High power factor preregulator design optimization,” in Proceedings of the Unitrode Seminar, 1992.