全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Resistive Ferroresonance Limiter for Potential Transformers

DOI: 10.1155/2012/529178

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ferroresonance or nonlinear resonance is a complex phenomenon, which may cause overvoltage in the electrical power system and endangers the system reliability and operation. The ability to predict the ferroresonance in the transformer depends on the accuracy of the transformer model used. In this paper, the effect of the new suggested ferroresonance limiter on the control of the chaotic ferroresonance and duration of chaotic transients in a potential transformer including nonlinear core losses is studied. To study the proposed ferroresonance limiter, a single phase 100?VA, 275?kV potential transformer is simulated. The magnetization characteristic of the potential transformer is modeled by a single-value two-term polynomial. The core losses are modeled by third order power series in terms of voltage and include core nonlinearities. The simulation results show that the ferroresonance limiter has a considerable effect on the ferroresonance overvoltage. 1. Introduction The ferroresonance is typically initiated by saturable magnetizing inductance of a transformer and a capacitive distribution cable or transmission line connected to the transformer. In most practical situations, ferroresonance results in dominated currents, but in some operating “mode”, may cause significant high value distorted winding voltage waveform, which is typically referred to as ferroresonance [1]. Although occurrences of the “resonance” involves a capacitance and an inductance, there is no definite resonant frequency. In this phenomenon, more than one response is possible for the same set of parameters, and drifts or transients may cause the response to jump from one steady-state response to another one. Its occurrence is more likely to happen in the absence of adequate damping [1]. Researches on ferroresonance in transformers have been conducted for more than 80 years. The word ferroresonance first appeared in the literature in 1920. Nonlinear dynamical tools for studying ferroresonance have been used in [2]. Practical interests have shown that the use of series capacitors for voltage regulation could cause ferroresonance in distribution systems [3]. Ferroresonant behavior of a 275?kV potential transformer, fed from a sinusoidal supply via circuit breaker grading capacitance, has been studied in [4, 5]. The potential transformer ferroresonance from an energy transfer point of view has been presented in [6]. A systematical method for suppressing ferroresonance at neutral-grounded substations has been studied in [7]. A sensitivity analysis on power transformer ferroresonance of

References

[1]  H. Radmanesh and F. S. Hamid, “Analyzing ferroresonance phenomena in power transformers including zinc oxide arrester and neutral resistance,” Applied Computational Intelligence and Soft Computing, vol. 2012, Article ID 525494, 5 pages, 2012.
[2]  B. A. Mork and D. L. Stuehm, “Application of nonlinear dynamics and chaos to ferroresonance in distribution sysytems,” IEEE Transactions on Power Delivery, vol. 9, no. 2, pp. 1009–1017, 1994.
[3]  J. W. Butler and C. Concordia, “Analysis of series capacitor application problems,” AIEE Transactions, vol. 56, pp. 975–988, 1937.
[4]  Z. Emin, B. A. T. Al Zahawi, and Y. K. Tong, “Voltage transformer ferroresonance in 275 kV substation,” in Proceedings of the 11th International Symposium on High Voltage Engineering, pp. 283–286, August 1999.
[5]  H. Radmanesh and M. Rostami, “Effect of circuit breaker shunt resistance on chaotic ferroresonance in voltage transformer,” Advances in Electrical and Computer Engineering, vol. 10, no. 3, pp. 71–77, 2010.
[6]  R. G. Andrei and B. R. Halley, “Voltage transformer ferroresonance from an energy transfer standpoint,” IEEE Transactions on Power Delivery, vol. 4, no. 3, pp. 1773–1778, 1989.
[7]  Y. Li, W. Shi, R. Qin, and J. Yang, “A systematical method for suppressing ferroresonance at neutral-grounded substations,” IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 1009–1014, 2003.
[8]  C. Charalambous, Z. D. Wang, M. Osborne, and P. Jarman, “Sensitivity studies on power transformer ferroresonance of a 400kV double circuit,” IET Journal of Generation, Transmission and Distribution, vol. 2, no. 2, pp. 159–166, 2008.
[9]  Y. Li, W. Shi, and F. Li, “Novel analytical solution to fundamental ferroresonance—part I: power frequency excitation characteristic,” IEEE Transactions on Power Delivery, vol. 21, no. 2, pp. 788–793, 2006.
[10]  H. Radmanesh, G. B. Gharehpetian, and H. Fathi, “Ferroresonance of power transformers considering nonlinear core losses and metal oxide surge arrester effects,” Electric Power Components and Systems, vol. 40, no. 5, pp. 463–479, 2012.
[11]  D. A. N. Jacobson, P. W. Lehn, and R. W. Menzies, “Stability domain calculations of period-1 ferroresonance in a nonlinear resonant circuit,” IEEE Transactions on Power Delivery, vol. 17, no. 3, pp. 865–871, 2002.
[12]  G. Mokryani and M. R. Haghifam, “Application of wavelet transform and MLP neural network for Ferroresonance identification,” in Proceedings of the IEEE Conference of Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–6, July 2008.
[13]  A. Rezaei-Zare, R. Iravani, and M. Sanaye-Pasand, “Impacts of transformer core hysteresis formation on stability domain of ferroresonance modes,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 177–186, 2009.
[14]  H. Radmanesh and G. B. Gharehpetian, “Ferroresonance suppression in power transformers using chaos theory,” International Journal of Electrical Power and Energy Systems, vol. 45, no. 1, pp. 1–9, 2013.
[15]  C. A. Charalambous, Z. D. Wang, P. Jarman, and M. Osborne, “2-D finite-element electromagnetic analysis of an autotransformer experiencing ferroresonance,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1275–1283, 2009.
[16]  H. Radmanesh, “Controlling chaotic ferroresonance oscillations in autotransformers including linear and nonlinear core losses effect,” International Review of Electrical Engineering, vol. 5, no. 6, pp. 2644–2652, 2010.
[17]  P. G. Khorasani and A. Deihimi, “A new modeling of matlab transformer for accurate simulation of ferroresonance,” in Proceedings of the 2nd International Conference on Power Engineering, Energy and Electrical Drives (POWERENG '09), pp. 529–534, March 2009.
[18]  H. Radmanesh and H. Fathi, “Studying voltage transformer ferroresonance,” Research Journal of Applied Sciences, Engineering and Technology, vol. 4, no. 19, pp. 3680–3686, 2012.
[19]  K. Al-Anbarri, R. Ramanujam, R. Saravanaselvan, and K. Kuppusamy, “Effect of iron core loss nonlinearity on chaotic ferroresonance in power transformers,” Electric Power Systems Research, vol. 65, no. 1, pp. 1–12, 2003.
[20]  E. P. Dick and W. Watson, “Transformer models for transient studies based on field measurements,” IEEE Transactions on Power Apparatus and Systems, vol. 100, no. 1, pp. 409–419, 1981.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133