全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oblique Du-Fort Frankel Beam Propagation Method

DOI: 10.1155/2011/196707

Full-Text   Cite this paper   Add to My Lib

Abstract:

The oblique BPM based on the Du-Fort Frankel method is presented. The paper demonstrates the accuracy and the computational improvements of the scheme compared to the oblique BPM based on Crank-Nicholson (CN) scheme. 1. Introduction Increasingly complex optical devices demand computationally fast and memory efficient algorithms for modelling purposes. Finite difference beam propagation method (FD-BPM) is a popular numerical technique for simulating large network of optical components due to its computational advantages over classical numerical techniques such as Finite Difference Time Domain (FDTD) method. The BPM method is commonly applied in the Cartesian coordinate system. However when the boundaries of an optical component are not aligned to the Cartesian mesh, for example in the case of tilted waveguides, bends and Mach-Zehnder modulators, sampling on the Cartesian mesh introduces nonphysical staircasing noise. The noise can be minimised by using very fine mesh but that in return incurs large computational costs. To more efficiently reduce the sampling error an improved three-point formulas are used at the interface which take into account the distance between the boundary and the transverse sampling points [1–3]. Further increase in accuracy of the Cartesian BPM, particularly for strongly guided waveguides, is achieved by considering the longitudinal component of magnetic field which is commonly neglected in the standard FD-BPM method [4]. In contrast to Cartesian system, Oblique and Structure Related (SR) coordinate system offers an accurate and efficient alternative for modelling nonorthogonal structures and automatically satisfies . The sampling grid of the SR mesh is aligned with the component material boundary thus eliminating staircase error and allowing relaxation in mesh size. Various SR-BPM schemes have been introduced [5–11] and different schemes can be combined together to map out the optical component. Furthermore, the SR coordinate system ensures high accuracy for the simple paraxial BPM formulation even without the use of wide-angled schemes [10]. The oblique equation takes into account the propagation direction, which is usually parallel to the structure boundary. Hence the mode-mismatch error is small. One of the motivations for implementation in oblique coordinates is to remove the need for high-order wide-angle scheme which requires substantial computational resources. Wide-angle for oblique coordinate has been developed by Sujecki [11]. However the author has also confirmed that the wide-angle oblique approach should in

References

[1]  C. Vassallo, “Interest of improved three-point formulas for finite-difference modeling of optical devices,” Journal of the Optical Society of America A, vol. 14, no. 12, pp. 3273–3284, 1997.
[2]  Y.-P. Chiou, Y.-C. Chiang, and H.-C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” Journal of Lightwave Technology, vol. 18, no. 2, pp. 243–251, 2000.
[3]  Y.-C. Chiang, Y.-P. Chiou, and H.-C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” Journal of Lightwave Technology, vol. 20, no. 8, pp. 1609–1618, 2002.
[4]  J. Yamauchi, Y. Nito, and H. Nakano, “A modified semivectorial BPM retaining the effects of the longitudinal field component and its application to the design of a spot-size converter,” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2470–2476, 2009.
[5]  T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Optical and Quantum Electronics, vol. 31, no. 9, pp. 689–703, 1999.
[6]  D. Z. Djurdjevic, T. M. Benson, P. Sewell, and A. Vukovic, “Fast and accurate analysis of 3-D curved optical waveguide couplers,” Journal of Lightwave Technology, vol. 22, no. 10, pp. 2333–2340, 2004.
[7]  S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” Journal of Lightwave Technology, vol. 17, no. 11, pp. 2379–2388, 1999.
[8]  G. R. Hadley, “Slanted-wall beam propagation,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2367–2375, 2007.
[9]  J. Yamauchi, J. Shibayama, and H. Nakano, “Finite-difference beam propagation method using the oblique coordinate system,” Electronics and Communications in Japan, Part II: Electronics, vol. 78, no. 6, pp. 20–27, 1995.
[10]  P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” Journal of Lightwave Technology, vol. 15, no. 4, pp. 688–696, 1997.
[11]  S. Sujecki, “Wide-angle, finite-difference beam propagation in oblique coordinate system,” Journal of the Optical Society of America A, vol. 25, no. 1, pp. 138–145, 2008.
[12]  S. Sujecki, “Generalized rectangular finite difference beam propagation method,” Applied Optics, vol. 47, no. 23, pp. 4280–4286, 2008.
[13]  H. A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM Journal on Scientific Computing, vol. 13, no. 2, pp. 631–644, 1992.
[14]  D. W. Peaceman and H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations,” Journal of the Society for Industrial and Applied Mathematics, vol. 3, p. 28, 1955.
[15]  H. M. Masoudi and J. M. Arnold, “Spurious modes in the DuFort-Frankel finite-difference beam propagation method,” IEEE Photonics Technology Letters, vol. 9, no. 10, pp. 1382–1384, 1997.
[16]  P. Sewell, T. M. Benson, and A. Vukovic, “A stable DuFort-Frankel Beam-Propagation method for lossy structures and those with perfectly matched layers,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 374–381, 2005.
[17]  S. Sujecki, T. M. Benson, P. Sewell, and P. C. Kendall, “Novel vectorial analysis of optical waveguides,” Journal of Lightwave Technology, vol. 16, no. 7, pp. 1329–1335, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133