全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Model for a Torsional-Mode Ultrasonic Transducer for an Acousto-Optic In-Fiber Isolator

DOI: 10.1155/2010/823157

Full-Text   Cite this paper   Add to My Lib

Abstract:

Torsional ultrasound modes can couple the optical polarization states in a birefringent fiber. Polarization coupling produced by interaction with a higher-order torsional mode slightly above its cutoff may provide a route to producing an in-fiber isolator suitable for use in narrow-band high-power fiber amplifiers. This paper describes a model of a transducer generating torsional modes in a cylindrical fiber. This model predicts that almost all of the power applied to the transducer is radiated into the desired mode. The paper also discusses effects produced by acoustic absorption and the dependence of the acoustic velocity on temperature. 1. Introduction By matching the optical polarization beat length in a birefringent silica optical fiber to the axial wavelength of a traveling torsional wave of angular frequency propagating in the fiber, it is possible to couple light from one polarization to the other [1, 2]. When light is coupled from the slow polarization to the fast polarization, it is down-shifted in frequency by if the light and sound are copropagating, but up-shifted if the light and sound are counter-propagating. This nonreciprocal frequency shift can be used to make an in-fiber acousto-optic (AO) isolator. This requires placing two torsional transducers on the fiber separated by , where is the group velocity of light in the fast polarization. These transducers propagate sound in the same direction. One watt of acoustic power from each transducer is sufficient to couple 50% of the light from one polarization to the other over a few centimeters [2]. The polymer jacket is removed from the fiber in the interaction regions to prevent acoustic damping. The relative acoustic phase of the two transducers is adjusted such that in the forward direction all of the light at the wavelength of interest returns to the slow polarization, whereas in the backward direction all of the light at this wavelength goes into the fast polarization. Polarizers at both ends, such as 45-degree tilted fiber Bragg gratings [3], remove light in the fast polarization to make an isolator. To date an isolator based on torsional acoustic waves has not been made, but 100% polarization switching has been demonstrated using the lowest-order ( ) torsional mode [1]. However, an analogous isolator was demonstrated using the lowest-order flexural mode at ?MHz [4]. In this case coupling was between the two transverse modes of a two-mode fiber. Although a 22?dB extinction ratio was reported, the large D?=?11?m spacing between the transducers makes this approach unattractive for

References

[1]  K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Optics Express, vol. 15, no. 19, pp. 12362–12367, 2007.
[2]  H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” Journal of the Optical Society of America A, vol. 13, no. 1, pp. 112–118, 1996.
[3]  K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on tilted fiber Bragg gratings,” Optics Letters, vol. 30, no. 11, pp. 1285–1287, 2005.
[4]  I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber-optic nonreciprocal modulator,” Optics Letters, vol. 22, no. 8, pp. 507–509, 1997.
[5]  H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” Journal of Lightwave Technology, vol. 6, no. 3, pp. 428–436, 1988.
[6]  R. Vacher, J. Pelous, F. Plicque, and A. Zarembowitch, “Ultrasonic and brillouin scattering study of the elastic properties of vitreous silica between 10 and 300?K,” Journal of Non-Crystalline Solids, vol. 45, no. 3, pp. 397–410, 1981.
[7]  R. N. Thurston, “Elastic waves in rods and clad rods,” Journal of the Acoustical Society of America, vol. 64, no. 1, pp. 1–37, 1978.
[8]  A. I. Beltzer, Acoustics of Solids, Springer, Berlin, Germany, 1988.
[9]  C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” Journal of the Acoustical Society of America, vol. 48, pp. 1086–1092, 1970.
[10]  M. N. Kul'bitskaya and V. A. Shutilov, “Ultrasonic investigation of glasses (review),” Soviet Physics—Acoustics, vol. 22, pp. 451–461, 1976.
[11]  D. B. Fraser, J. T. Krause, and A. H. Meitzler, “Physical limitations on the performance of vitreous silica in high-frequency ultrasonic and acousto-optical devices,” Applied Physics Letters, vol. 11, no. 10, pp. 308–310, 1967.
[12]  J. T. Krause, “Gold-indium bond for measurement of ultrasonic properties in solids at high temperatures,” Journal of Applied Physics, vol. 39, no. 11, pp. 5334–5335, 1968.
[13]  K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Optics Express, vol. 16, no. 7, pp. 4631–4638, 2008.
[14]  M. Berwick, C. N. Pannell, P. ST. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electronics Letters, vol. 27, no. 9, pp. 713–715, 1991.
[15]  M. Berwick and D. A. Jackson, “Coaxial optical-fiber frequency shifter,” Optics Letters, vol. 17, pp. 270–272, 1992.
[16]  J. Friend, K. Nakamura, and S. Ueha, “A torsional transducer through in-plane shearing of paired planar piezoelectric elements,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 7, pp. 871–878, 2004.
[17]  N. Tsubouchi, “Resonator for torsional vibration,” US patent no. 3,774,057, November 1973.
[18]  J. O. Kim and O. S. Kwon, “Vibration characteristics of piezoelectric torsional transducers,” Journal of Sound and Vibration, vol. 264, no. 2, pp. 453–473, 2003.
[19]  W. Johnson, B. A. Auld, and G. A. Alers, “Spectroscopy of resonant torsional modes in cylindrical rods using electromagnetic-acoustic transduction,” Journal of the Acoustical Society of America, vol. 95, no. 3, pp. 1413–1418, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133