全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

DOI: 10.1155/2011/394683

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reports on an optoelectrofluidic platform which consists of the organic photoconductive material, titanium oxide phthalocyanine (TiOPc), and the photocrosslinkable polymer, poly (ethylene glycol) diacrylate (PEGDA). TiOPc simplifies the fabrication process of the optoelectronic chip due to requiring only a single spin-coating step. PEGDA is applied to embed the moldless PEGDA-based microchannel between the top ITO glass and the bottom TiOPc substrate. A real-time control interface via a touch panel screen is utilized to select the target 15?μm polystyrene particles. When the microparticles flow to an illuminating light bar, which is oblique to the microfluidic flow path, the lateral driving force diverts the microparticles. Two light patterns, the switching oblique light bar and the optoelectronic ladder phenomenon, are designed to demonstrate the features. This work integrating the new material design, TiOPc and PEGDA, and the ability of mobile microparticle manipulation demonstrates the potential of optoelectronic approach. 1. Introduction The microparticle manipulation by using either optical forces or electrokinetics has been getting important and popular, especially in fields like lab-on-a-chip. The former utilize a laser beam to trap microparticles toward the focal point. The invention of optical tweezers [1–3] and the various development of the holographic optical tweezers [4, 5] have established a convenient platform to manipulate either single or multimicroparticles. However, the requirement of high N.A. value lens in optical tweezers to perform a high focal laser beam highly reduces the working distance and constrains the application [6, 7]. The latter such as dielectrophoresis (DEP) induces microparticle polarized in a nonuniform electric field to either attract or repel toward the field maximum or minimum [8, 9]. General methods to generate nonuniform electric field are to fabricate metal electrodes on the glass substrate. The fixed metal pattern limits the flexiblity to manipulate microparticle. Recently, Chiou et al. integrated the optical flexibility and the electronic approach to present optoelectronic tweezers (OETs) [10]. Its various applications have been applied in biological field [11]. Photoconductive material is a key character of the OET. The amorphous silicon (a-Si) is usually fabricated on an ITO glass to prevent the charges [12]. While the light pattern with proper absorbing wavelength is projected onto the a-Si layer, the resistance within the illumination region is reduced and the charges transport through the

References

[1]  P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, vol. 5, no. 3, pp. 210–218, 2006.
[2]  A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, 1987.
[3]  K. C. Neuman and S. M. Block, “Optical trapping,” Review of Scientific Instruments, vol. 75, no. 9, pp. 2787–2809, 2004.
[4]  E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Review of Scientific Instruments, vol. 69, no. 5, pp. 1974–1977, 1998.
[5]  B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Optics Express, vol. 16, no. 20, pp. 15765–15776, 2008.
[6]  J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annual Review of Biochemistry, vol. 77, no. 1, pp. 205–228, 2008.
[7]  D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003.
[8]  R. Pethig, “Dielectrophoresis: status of the theory, technology, and applications,” Biomicrofluidics, vol. 4, no. 2, article 022811, 35 pages, 2010.
[9]  C. Zhang, K. Khoshmanesh, A. Mitchell, and K. Kalantar-Zadeh, “Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems,” Analytical and Bioanalytical Chemistry, vol. 396, no. 1, pp. 401–420, 2010.
[10]  P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005.
[11]  Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, “Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP),” Optical and Quantum Electronics, vol. 37, no. 13–15, pp. 1385–1395, 2005.
[12]  H.-Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, no. 2, pp. 165–172, 2010.
[13]  A. T. Ohta, P. Y. Chiou, T. H. Han et al., “Dynamic cell and microparticle control via optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 491–499, 2007.
[14]  A. T. Ohta, P. Y. Chiou, H. L. Phan et al., “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 2, pp. 235–242, 2007.
[15]  A. T. Ohta, M. Garcia, J. K. Valley et al., “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab on a Chip, vol. 10, no. 23, pp. 3213–3217, 2010.
[16]  M. Hoeb, J. O. R?dler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophysical Journal, vol. 93, no. 3, pp. 1032–1038, 2007.
[17]  P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, no. 3, pp. 525–531, 2008.
[18]  A. Jamshidi, P. J. Pauzauskie, P. J. Schuck et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008.
[19]  A. T. Ohta, et al., “Trapping and transport of silicon nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '07), 2007.
[20]  A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the 2008 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (OPT MEMS '10), pp. 7–8, August 2008.
[21]  M.-C. Tien, A. T. Ohta, K. Yu, S. L. Neale, and M. C. Wu, “Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly,” Applied Physics A, vol. 95, no. 4, pp. 967–972, 2009.
[22]  A. Khademhosseini, G. Eng, J. Yeh et al., “Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment,” Journal of Biomedical Materials Research, vol. 79, no. 3, pp. 522–532, 2006.
[23]  D. T. Chiu, N. L. Jeon, S. Huang et al., “Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2408–2413, 2000.
[24]  J. Fukuda, A. Khademhosseini, Y. Yeo et al., “Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures,” Biomaterials, vol. 27, no. 30, pp. 5259–5267, 2006.
[25]  J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials, vol. 31, no. 21, pp. 5536–5544, 2010.
[26]  Y. S. Hwang, G. C. Bong, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseinia, “Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 16978–16983, 2009.
[27]  H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung, and A. Khademhosseini, “A microwell array system for stem cell culture,” Biomaterials, vol. 29, no. 6, pp. 752–763, 2008.
[28]  J. A. Burdick and K. S. Anseth, “Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering,” Biomaterials, vol. 23, no. 22, pp. 4315–4323, 2002.
[29]  Y. Du, E. Lo, S. Ali, and A. Khademhosseini, “Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9522–9527, 2008.
[30]  A. Revzin, R. J. Russell, V. K. Yadavalli et al., “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir, vol. 17, no. 18, pp. 5440–5447, 2001.
[31]  C. M. Hwang, W. Y. Sim, S. H. Lee et al., “Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method,” Biofabrication, vol. 2, no. 4, Article ID 045001, 2010.
[32]  G.-B. Lee, Y. H. Lin, W. Y. Lin, W. Wang, and T. F. Guo, “Optically-induced dielectrophoresis using polymer materials for biomedical applications,” in Proceedings of the The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS '09), pp. 2135–2138, June 2009.
[33]  S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Optics Letters, vol. 35, no. 12, pp. 1959–1961, 2010.
[34]  R. Pethig, “Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells,” Critical Reviews in Biotechnology, vol. 16, no. 4, pp. 331–348, 1996.
[35]  T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 6, pp. 33–42, 2003.
[36]  C.-T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, “Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap,” Lab on a Chip, vol. 6, no. 6, pp. 724–734, 2006.
[37]  B. H. Lapizco-Encinas and M. Rito-Palomares, “Dielectrophoresis for the manipulation of nanobioparticles,” Electrophoresis, vol. 28, no. 24, pp. 4521–4538, 2007.
[38]  Y.-H. Lin and G.-B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, no. 4, pp. 572–578, 2008.
[39]  J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab on a Chip, vol. 9, no. 12, pp. 1714–1720, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133