This paper presents optoelectrofluidic technologies for manipulation of nanoparticles and biomolecules. Optoelectrofluidics provides an elegant scheme for the programmable manipulation of particles or fluids in microenvironments based on optically induced electrokinetics. Recent progress on the optoelectrofluidic manipulation of nanoobjects, which include nanospheres, nanowires, nanotubes, and biomolecules, is introduced. Some potential applications of the optoelectrofluidic nanoparticle manipulation, such as nanoparticles separation, nanostructures manufacturing, molecular physics, and clinical diagnostics, and their future directions are also discussed. 1. Introduction A number of advances in micro- and nanomanipulation techniques have been made due to the increase of needs for high performance manipulation—trapping, transportation, separation, concentration, and assembly—of micro-/nanoobjects in a variety of applications. In particular, manipulating nanoobjects such as nanospheres, nanowires, and biomolecules has provided tremendous opportunities in various application fields, including from device manufacturing to chemical analysis. For addressing such nanoparticle applications, numerous techniques based on various forces such as mechanical [1–4], optical [5–9], electrical [10–13], and magnetic [14, 15] forces have been introduced. In this paper, we present the fundamentals of optoelectrofluidics and the major experiments performed to date for manipulating nanoparticles and molecules using the optoelectrofluidic platforms. Recent progress and some potential applications of optoelectrofluidic technology for nanoparticle manipulation, as well as its future direction are discussed. 2. Conventional Techniques for Nanoparticle Manipulation: Optical and Electrical Methods Optical manipulation techniques have attracted much attention for a long time since the appearance of optical tweezers in 1970 [5] and been one of the most frequently used methods because one can directly trap and transport individual particles on demand based on the optical field of a tightly focused laser beam. However, it is well known that a lower bound on the size to which light can be focused is limited by the diffraction limit, which is given by ., where and . are the wavelength of the light and the numerical aperture of the lens, respectively [16]. Despite such limitations, conventional optical tweezers have been used to trap not only viruses [17] and biological cells [18] but also metallic nanoparticles [6], nanowires [7], and carbon nanotubes (CNTs) [8]. When the target object
References
[1]
I. W. Lyo and P. Avouris, “Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM,” Science, vol. 253, no. 5016, pp. 173–176, 1991.
[2]
J. A. Stroscio and D. M. Eigler, “Atomic and molecular manipulation with the scanning tunneling microscope,” Science, vol. 254, no. 5036, pp. 1319–1326, 1991.
[3]
P. H. Beton, A. W. Dunn, and P. Moriarty, “Manipulation of C60 molecules on a Si surface,” Applied Physics Letters, vol. 67, no. 8, pp. 1075–1077, 1995.
[4]
T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim, “Controlled room-temperature positioning of individual molecules: molecular flexure and motion,” Science, vol. 271, no. 5246, pp. 181–184, 1996.
[5]
A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, no. 4, pp. 156–159, 1970.
[6]
K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Optics Letters, vol. 19, no. 13, pp. 930–932, 1994.
[7]
P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nature Materials, vol. 5, no. 2, pp. 97–101, 2006.
[8]
J. Plewa, E. Tanner, D. M. Mueth, and D. G. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Optics Express, vol. 12, no. 9, pp. 1978–1981, 2004.
[9]
T. Nishizaka, H. Miyata, H. Yoshikawa, S. Ishiwata, and K. Kinosita, “Unbinding force of a single motor molecule of muscle measured using optical tweezers,” Nature, vol. 377, no. 6546, pp. 251–254, 1995.
[10]
N. G. Green and H. Morgan, “Dielectrophoretic separation of nano-particles,” Journal of Physics D, vol. 30, no. 11, pp. L41–L44, 1997.
[11]
S. Raychaudhuri, S. A. Dayeh, D. Wang, and E. T. Yu, “Precise semiconductor nanowire placement through dielectrophoresis,” Nano Letters, vol. 9, no. 6, pp. 2260–2266, 2009.
[12]
R. Krupke, F. Hennrich, H. V. L?hneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, pp. 344–347, 2003.
[13]
B. C. Gierhart, D. G. Howitt, S. J. Chen, R. L. Smith, and S. D. Collins, “Frequency dependence of gold nanoparticle superassembly by dielectrophoresis,” Langmuir, vol. 23, no. 24, pp. 12450–12456, 2007.
[14]
B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 25, pp. 8860–8864, 2005.
[15]
C. S. Lee, H. Lee, and R. M. Westervelt, “Microelectromagnets for the control of magnetic nanoparticles,” Applied Physics Letters, vol. 79, no. 20, pp. 3308–3310, 2001.
[16]
M. Born and E. Wolf, Principles of Optics, Cambridge University Press, New York, NY, USA, 1999.
[17]
A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987.
[18]
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, 1987.
[19]
D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab on a Chip, vol. 11, no. 6, pp. 995–1009, 2011.
[20]
A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature, vol. 457, no. 7225, pp. 71–75, 2009.
[21]
S. Mandai, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Letters, vol. 10, no. 1, pp. 99–104, 2010.
[22]
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nature Photonics, vol. 2, no. 6, pp. 365–370, 2008.
[23]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Letters, vol. 10, no. 3, pp. 1006–1011, 2010.
[24]
H. Hwang and J. K. Park, “Rapid and selective concentration of microparticles in an optoelectrofluidic platform,” Lab on a Chip, vol. 9, no. 2, pp. 199–206, 2009.
[25]
H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab on a Chip, vol. 11, no. 1, pp. 33–47, 2011.
[26]
A. Mizuno, M. Nishioka, Y. Ohno, and L. D. Dascalescu, “Liquid microvortex generated around a laser focal point in an intense high-frequency electric field,” IEEE Transactions on Industry Applications, vol. 31, no. 3, pp. 464–468, 1995.
[27]
A. Mizuno, H. Sakano, and Y. Ohno, “Opto-electrostatic micro-manipulation of cells and fine particles,” Review of Laser Engineering, vol. 19, no. 9, pp. 895–900, 1991.
[28]
A. Mizuno, M. Imamura, and K. Hosoi, “Manipulation of single fine particle in liquid by electrical force in combination with optical pressure,” IEEE Transactions on Industry Applications, vol. 27, no. 1, pp. 140–146, 1991.
[29]
M. Nishioka, T. Tanizoe, S. Katsura, and A. Mizuno, “Micro manipulation of cells and DNA molecules,” Journal of Electrostatics, vol. 35, no. 1, pp. 83–91, 1995.
[30]
R. C. Hayward, D. A. Saville, and I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature, vol. 404, no. 6773, pp. 56–59, 2000.
[31]
P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005.
[32]
W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD),” Microfluidics and Nanofluidics, vol. 3, no. 2, pp. 217–225, 2007.
[33]
Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, “Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP),” Optical and Quantum Electronics, vol. 37, no. 13–15, pp. 1385–1395, 2005.
[34]
H. Hwang, Y. Oh, J. J. Kim et al., “Reduction of nonspecific surface-particle interactions in optoelectronic tweezers,” Applied Physics Letters, vol. 92, no. 2, Article ID 024108, 2008.
[35]
H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis, vol. 29, no. 6, pp. 1203–1212, 2008.
[36]
W. Choi, S. W. Nam, H. Hwang, S. Park, and J. K. Park, “Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image,” Applied Physics Letters, vol. 93, no. 14, Article ID 143901, 2008.
[37]
H. Hwang, D. H. Lee, W. Choi, and J. K. Park, “Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force,” Biomicrofluidics, vol. 3, no. 1, Article ID 014103, 2009.
[38]
H. Hwang, Y. H. Park, and J. K. Park, “Optoelectrofluidic control of colloidal assembly in an optically induced electric field,” Langmuir, vol. 25, no. 11, pp. 6010–6014, 2009.
[39]
J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 342–350, 2008.
[40]
A. Kumar, S. J. Williams, H.-S. Chuang, N. G. Green, and S. T. Wereley, “Hybrid opto-electric manipulation ni microfluidics-opportunities and challenges,” Lab on a Chip, vol. 11, pp. 2135–2148, 2011.
[41]
T. B. Jones, Electromechanics of Particles, Cambridge Univeristy Press, New York, NY, USA, 1995.
[42]
L. Zheng, J. P. Brody, and P. J. Burke, “Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly,” Biosensors and Bioelectronics, vol. 20, no. 3, pp. 606–619, 2004.
[43]
P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, no. 3, pp. 525–531, 2008.
[44]
S. J. Williams, A. Kumar, N. G. Green, and S. T. Wereley, “A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles,” Nanoscale, vol. 1, no. 1, pp. 133–137, 2009.
[45]
A. Jamshidi, S. L. Neale, K. Yu et al., “Nanopen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Letters, vol. 9, no. 8, pp. 2921–2925, 2009.
[46]
A. Ajdari, “Pumping liquids using asymmetric electrode arrays,” Physical Review E, vol. 61, no. 1, pp. R45–R48, 2000.
[47]
A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” Journal of Physics D, vol. 31, no. 18, pp. 2338–2353, 1998.
[48]
A. Jamshidi, P. J. Pauzauskie, P. J. Schuck et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008.
[49]
P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, no. 11, Article ID 113104, 2009.
[50]
H. Hwang, J. J. Kim, and J. K. Park, “Experimental investigation of electrostatic particle-particle interactions in optoelectronic tweezers,” Journal of Physical Chemistry B, vol. 112, no. 32, pp. 9903–9908, 2008.
[51]
D. G. Hafeman, J. B. Harkins, C. E. Witkowski et al., “Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 17, pp. 6436–6441, 2006.
[52]
A. Braiman, F. Rudakov, and T. Thundat, “Highly selective separation of DNA fragments using optically directed transport,” Applied Physics Letters, vol. 96, no. 5, Article ID 053701, 2010.
[53]
M. Hoeb, J. O. R?dler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophysical Journal, vol. 93, no. 3, pp. 1032–1038, 2007.
[54]
H. Hwang and J. K. Park, “Dynamic light-activated control of local chemical concentration in a fluid,” Analytical Chemistry, vol. 81, no. 14, pp. 5865–5870, 2009.
[55]
M. Nakano, H. Kurita, J. Komatsu, A. Mizuno, and S. Katsura, “Stretching of long DNA molecules in the microvortex induced by laser and ac electric field,” Applied Physics Letters, vol. 89, no. 13, Article ID 133901, 2006.
[56]
X. Sun, S. M. Tabakman, W. S. Seo et al., “Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals,” Angewandte Chemie International Edition, vol. 48, no. 5, pp. 939–942, 2009.
[57]
S. F. Sweeney, G. H. Woehrle, and J. E. Hutchison, “Rapid purification and size separation of gold nanoparticles via diafiltration,” Journal of the American Chemical Society, vol. 128, no. 10, pp. 3190–3197, 2006.
[58]
J. H. Kang and J. K. Park, “Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device,” Small, vol. 3, no. 10, pp. 1784–1791, 2007.
[59]
Y. Q. Xu, H. Peng, R. H. Hauge, and R. E. Smalley, “Controlled multistep purification of single-walled carbon nanotubes,” Nano Letters, vol. 5, no. 1, pp. 163–168, 2005.
[60]
Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, no. 4, pp. 572–578, 2008.
[61]
R. G. Freeman, K. C. Grabar, K. J. Allison et al., “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science, vol. 267, no. 5204, pp. 1629–1632, 1995.
[62]
L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. K?ll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Applied Physics Letters, vol. 78, no. 6, pp. 802–804, 2001.
[63]
A. Dhawan, Y. Du, F. Yan, M. D. Gerhold, V. Misra, and T. Vo-Dinh, “Methodologies for developing surface-enhanced raman scattering (SERS) substrates for detection of chemical and biological molecules,” IEEE Sensors Journal, vol. 10, no. 3, Article ID 5419269, pp. 608–616, 2010.
[64]
I. F. Cheng, C. C. Lin, D. Y. Lin, and H. C. Chang, “A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria,” Biomicrofluidics, vol. 4, no. 3, Article ID 034104, pp. 1–11, 2010.
[65]
Y. S. Huh, A. J. Chung, B. Cordovez, and D. Erickson, “Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells,” Lab on a Chip, vol. 9, no. 3, pp. 433–439, 2009.
[66]
H. Hwang, D. Han, Y. J. Oh, Y. K. Cho, K. H. Jeong, and J. K. Park, “In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform,” Lab on a Chip, vol. 11, no. 15, pp. 2518–2525, 2011.
[67]
H. Hwang and J. K. Park, “Measurement of molecular diffusion based on optoelectrofluidic fluorescence microscopy,” Analytical Chemistry, vol. 81, no. 21, pp. 9163–9167, 2009.
[68]
D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophysical Journal, vol. 16, no. 9, pp. 1055–1069, 1976.
[69]
E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers, vol. 13, no. 1, pp. 1–27, 1974.
[70]
S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature, vol. 348, no. 6299, pp. 348–352, 1990.
[71]
E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature, vol. 438, no. 7067, pp. 460–465, 2005.
[72]
T. R. Strick, V. Croquette, and D. Bensimon, “Single-molecule analysis of DNA uncoiling by a type II topoisomerase,” Nature, vol. 404, no. 6780, pp. 901–904, 2000.
[73]
M. Rief, F. Oesterhelt, B. Heymann, and H. E. Gaub, “Single molecule force spectroscopy on polysaccharides by atomic force microscopy,” Science, vol. 275, no. 5304, pp. 1295–1297, 1997.
[74]
K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nature Methods, vol. 5, no. 6, pp. 491–505, 2008.
[75]
Y. H. Lin, C. M. Chang, and G. B. Lee, “Manipulation of single DNA molecules by using optically projected images,” Optics Express, vol. 17, no. 17, pp. 15318–15329, 2009.
[76]
H. Hwang, H. Chon, J. Choo, and J. K. Park, “Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering,” Analytical Chemistry, vol. 82, no. 18, pp. 7603–7610, 2010.
[77]
X. Jiang, J. M. K. Ng, A. D. Stroock, S. K. W. Dertinger, and G. M. Whitesides, “A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens,” Journal of the American Chemical Society, vol. 125, no. 18, pp. 5294–5295, 2003.
[78]
P. Yager, T. Edwards, E. Fu et al., “Microfluidic diagnostic technologies for global public health,” Nature, vol. 442, no. 7101, pp. 412–418, 2006.
[79]
H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, no. 2, pp. 165–172, 2010.