Nonlinear dynamics of Vertical-Cavity Surface-Emitting Lasers (VCSELs) induced by optical injection, optical feedback, current modulation and mutual coupling is reviewed. Due to the surface emission and cylindrical symmetry VCSELs lack strong polarization anisotropy and may undergo polarization switching. Furthermore, VCSELs may emit light in multiple transverse modes. These VCSEL properties provide new features to the rich nonlinear dynamics induced by an external perturbation. We demonstrate for the case of orthogonal optical injection that new Hopf bifurcation on a two-polarization-mode solution delimits the injection locking region and that polarization switching and injection locking of first-order transverse mode lead to a new resonance tongue for large positive detunings. Similarly, the underlying polarization mode competition leads to chaotic-like behavior in case of gain switching and the presence of two transverse modes additionally reduces the possibility of regular dynamics. The bistable property of VCSEL makes it possible to investigate very fundamental problems of bistable systems with time-delay, such as the coherence resonance phenomenon. We also demonstrate that the synchronization quality between unidirectionally coupled VCSELs can be significantly enhanced when the feedback-induced chaos in the master laser involves both orthogonal LP fundamental transverse modes. 1. Introduction The change of the semiconductor laser cavity geometry from facet to surface-emitting gave birth to the vertical-cavity surface-emitting lasers (VCSELs) [1] with significant advantages, such as single longitudinal mode emission, low cost, circular output beam, and easy fabrication in two-dimensional arrays. As a result, VCSELs are nowadays substituting the traditional semiconductor edge emitting lasers (EELs) in many applications, such as fiber to the home links, computer networks, optical interconnects, and optical sensing. Until recently, most of the commercially available VCSELs were emitting in the near infrared, around 850?nm or 970?nm, based on GaAs active region and GaAs/AlGaAs DBR mirrors but now they become available also at telecommunication wavelengths 1.3 or 1.55?μm and at visible or even UV wavelengths. Emission in multiple transverse modes is usually found in VCSELs [2] as a result of spatial hole burning effect [3, 4]. Furthermore, due to the surface emission and cylindrical symmetry VCSELs grown on (001) substrate lack strong polarization anisotropy and may undergo polarization switching (PS) [2, 5]. Different physical mechanisms can lead to
References
[1]
H. Li and K. Iga, Eds., Vertical-Cavity Surface-Emitting Laser Devices, vol. 6 of Springer Series in Photonics, Springer, Berlin, Germany, 2002.
[2]
C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE Journal of Quantum Electronics, vol. 27, no. 6, pp. 1402–1409, 1991.
[3]
D. Vakhshoori, J. D. Wynn, G. J. Zydzik et al., “Top-surface emitting lasers with 1.9 v threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Applied Physics Letters, vol. 62, no. 13, pp. 1448–1450, 1993.
[4]
A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE Journal of Quantum Electronics, vol. 31, no. 8, pp. 1423–1431, 1995.
[5]
K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 1, no. 2, pp. 661–666, 1995.
[6]
M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Physical Review A, vol. 52, no. 2, pp. 1728–1739, 1995.
[7]
J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 5, pp. 765–783, 1997.
[8]
K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photonics Technology Letters, vol. 10, no. 1, pp. 6–8, 1998.
[9]
A. Valle, K. A. Shore, and L. Pesquera, “Polarization selection in birefringent vertical-cavity surface emitting lasers,” Journal of Lightwave Technology, vol. 14, no. 9, pp. 2062–2068, 1996.
[10]
B. Ryvkin, K. Panajotov, A. Georgievski et al., “Effect of photon-energy-dependent loss and gain mechanisms on polarization switching in vertical-cavity surface-emitting lasers,” Journal of the Optical Society of America B, vol. 16, no. 11, pp. 2106–2113, 1999.
[11]
J. I. Nishizawa and K. Ishida, “Injection-induced modulation of laser light by the interaction of laser diodes,” IEEE Journal of Quantum Electronics, vol. 11, no. 7, pp. 515–519, 1975.
[12]
R. Lang, “Injection locking properties of a semiconductor laser,” IEEE Journal of Quantum Electronics, vol. 18, no. 6, pp. 976–983, 1982.
[13]
K. Iwashita and K. Nakagawa, “Suppression of mode partition by laser diode light injection,” IEEE Journal of Quantum Electronics, vol. 18, no. 10, pp. 1669–1674, 1982.
[14]
T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technology Letters, vol. 7, no. 7, pp. 709–711, 1995.
[15]
L. Goldberg, H. F. Taylor, J. F. Weller, and D. R. Scifres, “Injection locking of coupled-stripe diode laser arrays,” Applied Physics Letters, vol. 46, no. 3, pp. 236–238, 1985.
[16]
E. K. Lee, H. S. Pang, J. D. Park, and H. Lee, “Bistability and chaos in an injection-locked semiconductor laser,” Physical Review A, vol. 47, no. 1, pp. 736–739, 1993.
[17]
V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection,” IEEE Journal of Quantum Electronics, vol. 30, no. 7, pp. 1537–1541, 1994.
[18]
T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Physical Review A, vol. 51, no. 5, pp. 4181–4185, 1995.
[19]
P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Physical Review Letters, vol. 78, no. 12, pp. 2353–2356, 1997.
[20]
S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Physical Review Letters, vol. 88, no. 6, pp. 063901/1–063901/4, 2002.
[21]
Z. G. Pan, S. Jiang, M. Dagenais et al., “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 63, no. 22, pp. 2999–3001, 1993.
[22]
J. B. Altés, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 42, no. 2, pp. 198–207, 2006.
[23]
Y. Hong, P. S. Spencer, P. Rees, and K. Alan Shore, “Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 38, no. 3, pp. 274–278, 2002.
[24]
H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, and R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE Journal of Quantum Electronics, vol. 32, no. 2, pp. 227–235, 1996.
[25]
J. Y. Law, G. H. M. Van Tartwijk, and G. P. Agrawal, “Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers,” Journal of Optics B, vol. 9, no. 5, pp. 737–747, 1997.
[26]
S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Experimental observation of anti-phase polarisation dynamics in VCSELS,” Optics Communications, vol. 202, no. 1–3, pp. 145–154, 2002.
[27]
Y. Hong, P. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization resolved chaos and instabilities in a VCSEL subject to optical injection,” Optics Communications, vol. 216, pp. 185–187, 2003.
[28]
C. H. Lee, T. H. Yoon, and S. Y. Shin, “Period doubling and chaos in a directly modulated laser diode,” Applied Physics Letters, vol. 46, no. 1, pp. 95–97, 1985.
[29]
Y. C. Chen, H. G. Winful, and J. M. Liu, “Subharmonic bifurcations and irregular pulsing behavior of modulated semiconductor lasers,” Applied Physics Letters, vol. 47, no. 3, pp. 208–210, 1985.
[30]
H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55 μm InGaAsP distributed feedback semiconductor laser,” IEEE Journal of Quantum Electronics, vol. 29, no. 6, pp. 1668–1675, 1993.
[31]
Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, and A. Suzuki, “Bifurcation in 20-GHz gain-switched 1.55-μM MQW lasers and its control by CW injection seeding,” IEEE Journal of Quantum Electronics, vol. 34, no. 7, pp. 1213–1222, 1998.
[32]
C. Mayol, R. Toral, C. R. Mirasso, S. I. Turovets, and L. Pesquera, “Theory of main resonances in directly modulated diode lasers,” IEEE Journal of Quantum Electronics, vol. 38, no. 3, pp. 260–269, 2002.
[33]
S. F. Yu, “Nonlinear dynamics of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 35, no. 3, pp. 332–340, 1999.
[34]
A. Valle, L. Pesquera, S. I. Turovets, and J. M. López, “Nonlinear dynamics of current-modulated vertical-cavity surface-emitting lasers,” Optics Communications, vol. 208, no. 1–3, pp. 173–182, 2002.
[35]
J. Y. Law and G. P. Agrawal, “Nonlinear spatio-temporal dynamics due to transverse-mode competition in gain-switched microcavity semiconductor lasers,” Optics Communications, vol. 138, no. 1–3, pp. 95–98, 1997.
[36]
M. Sciamanna, A. Valle, P. Mégret, M. Blondel, and K. Panajotov, “Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers,” Physical Review E, vol. 68, no. 1, Article ID 016207, 4 pages, 2003.
[37]
A. Valle, M. Sciamanna, and K. Panajotov, “Irregular pulsating polarization dynamics in gain-switched vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 44, no. 2, pp. 136–143, 2008.
[38]
A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Physical Review E, vol. 76, no. 4, Article ID 046206, 2007.
[39]
A. Valle, M. Arizaleta, H. Thienpont, K. Panajotov, and M. Sciamanna, “Transverse mode competition effects on the dynamics of gain-switched vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 93, no. 13, Article ID 131103, 2008.
[40]
J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE Journal of Quantum Electronics, vol. 28, no. 1, pp. 93–108, 1992.
[41]
C. Risch and C. Voumard, “Self-pulsation in the output intensity and spectrum of GaAs-AlGaAs cw diode lasers coupled to a frequency-selective external optical cavity,” Journal of Applied Physics, vol. 48, no. 5, pp. 2083–2085, 1977.
[42]
D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE Journal of Quantum Electronics, vol. 21, no. 6, pp. 674–679, 1984.
[43]
R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” Journal of Lightwave Technology, vol. 4, no. 11, pp. 1655–1661, 1986.
[44]
C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Physical Review A, vol. 59, no. 4, pp. 3021–3031, 1999.
[45]
M. Sciamianna, C. Masoller, F. Rogister, P. Mégret, N. B. Abraham, and M. Blondel, “Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime,” Physical Review A, vol. 68, no. 1, Article ID 015805, 4 pages, 2003.
[46]
M. Giudici, S. Balle, T. Ackemann, S. Barland, and J. R. Tredicce, “Polarization dynamics in vertical-cavity surface-emitting lasers with optical feedback: experiment and model,” Journal of the Optical Society of America B, vol. 16, no. 11, pp. 2114–2123, 1999.
[47]
M. Sondermann, H. Bohnet, and T. Ackermann, “Low-frequency fluctuations and polarization dynamics in vertical-cavity surface-emitting lasers with isotropic feedback,” Physical Review A, vol. 67, no. 2, Article ID 021802(R), 4 pages, 2003.
[48]
J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical-cavity surface-emitting lasers including multiple-reflection effects,” Journal of the Optical Society of America B, vol. 16, no. 11, pp. 2131–2139, 1999.
[49]
F. Marino, S. Barland, and S. Balle, “Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback,” IEEE Photonics Technology Letters, vol. 15, no. 6, pp. 789–791, 2003.
[50]
L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
[51]
C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photonics Technology Letters, vol. 8, no. 2, pp. 299–301, 1996.
[52]
R. Ju, P. S. Spencer, and K. A. Shore, “Polarization-preserved and polarization-rotated synchronization of chaotic vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 41, no. 12, pp. 1461–1467, 2005.
[53]
M. S. Torre, C. Masoller, and K. A. Shore, “Synchronization of unidirectionally coupled multi-transverse-mode vertical-cavity surface-emitting lasers,” Journal of the Optical Society of America B, vol. 21, no. 10, pp. 1772–1780, 2004.
[54]
Y. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Optics Letters, vol. 29, no. 11, pp. 1215–1217, 2004.
[55]
I. Gatare, M. Sciamanna, J. Buesa, H. Thienpont, and K. Panajotov, “Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Applied Physics Letters, vol. 88, no. 10, Article ID 101106, 2006.
[56]
A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE Journal of Quantum Electronics, vol. 43, no. 4, pp. 322–333, 2007.
[57]
I. Gatare, M. Sciamanna, M. Nizette, and K. Panajotov, “Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection,” Physical Review A, vol. 76, no. 3, Article ID 031803, 2007.
[58]
M. Sciamanna and K. Panajotov, “Two-mode injection locking in vertical-cavity surface-emitting lasers,” Optics Letters, vol. 30, no. 21, pp. 2903–2905, 2005.
[59]
M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Physical Review A, vol. 73, no. 2, Article ID 023811, 17 pages, 2006.
[60]
S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports, vol. 416, no. 1-2, pp. 1–128, 2005.
[61]
M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Optics Letters, vol. 28, no. 17, pp. 1543–1545, 2003.
[62]
K. Panajotov, M. Arizaleta, V. Gomez et al., “Semiconductor lasers for quantum sensing,” in Quantum Sensing and Nanophotonic Devices, Proceedings of SPIE, pp. 360–375, January 2004.
[63]
P. Besnard, M. Chares, G. Stephan, and F. Robert, “Switching between polarization modes of a vertical-cavity surface-emitting laser by isotropic optical feedback,” Journal of the Optical Society of America B, vol. 16, pp. 1059–1063, 1999.
[64]
G. Giacomelli, F. Marin, and I. Rabbiosi, “Stochastic and bona fide resonance: an experimental investigation,” Physical Review Letters, vol. 82, no. 4, pp. 675–678, 1999.
[65]
M. B. Willemsen, M. U. F. Khalid, M. P. Van Exter, and J. P. Woerdman, “Polarization switching of a vertical-cavity semiconductor laser as a Kramers hopping problem,” Physical Review Letters, vol. 82, no. 24, pp. 4815–4818, 1999.
[66]
B. Nagler, M. Peeters, J. Albert et al., “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: theory and experiment,” Physical Review A, vol. 68, no. 1, Article ID 013813, 8 pages, 2003.
[67]
C. Masoller, “Distribution of residence times of time-delayed bistable systems driven by noise,” Physical Review Letters, vol. 90, no. 2, Article ID 020601, 4 pages, 2003.
[68]
K. Panajotov, M. Sciamanna, A. Tabaka et al., “Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers,” Physical Review A, vol. 69, no. 1, Article ID 011801(R), 4 pages, 2004.
[69]
R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic resonance,” Journal of Physics A, vol. 14, no. 11, pp. L453–L457, 1981.
[70]
J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, “Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance,” Nature, vol. 365, no. 6444, pp. 337–340, 1993.
[71]
B. McNamara, K. Wiesenfeld, and R. Roy, “Observation of stochastic resonance in a ring laser,” Physical Review Letters, vol. 60, no. 25, pp. 2626–2629, 1988.
[72]
W. Hohmann, J. Müller, and F. W. Schneider, “Stochastic resonance in chemistry. 3. The minimal-bromate reaction,” Journal of Physical Chemistry, vol. 100, no. 13, pp. 5388–5392, 1996.
[73]
L. Gammaitoni, P. H?nggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Reviews of Modern Physics, vol. 70, no. 1, pp. 223–287, 1998.
[74]
H. Gang, T. Ditzinger, C. Z. Ning, and H. Haken, “Stochastic resonance without external periodic force,” Physical Review Letters, vol. 71, no. 6, pp. 807–810, 1993.
[75]
A. S. Pikovsky and J. Kurths, “Coherence resonance in a noise-driven excitable system,” Physical Review Letters, vol. 78, no. 5, pp. 775–778, 1997.
[76]
A. Neiman, P. I. Saparin, and L. Stone, “Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems,” Physical Review E, vol. 56, no. 1, pp. 270–273, 1997.
[77]
S. Fauve and F. Heslot, “Stochastic resonance in a bistable system,” Physics Letters A, vol. 97, no. 1-2, pp. 5–7, 1983.
[78]
G. Giacomelli, M. Giudici, S. Balle, and J. R. Tredicce, “Experimental evidence of coherence resonance in an optical system,” Physical Review Letters, vol. 84, no. 15, pp. 3298–3301, 2000.
[79]
B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Physics Reports, vol. 392, no. 6, pp. 321–424, 2004.
[80]
B. Lindner and L. Schimansky-Geier, “Coherence and stochastic resonance in a two-state system,” Physical Review E, vol. 61, no. 6 B, pp. 6103–6110, 2000.
[81]
C. Masoller, “Noise-induced resonance in delayed feedback systems,” Physical Review Letters, vol. 88, no. 3, Article ID 034102, 4 pages, 2002.
[82]
C. Palenzuela, R. Toral, C. R. Mirasso, O. Calvo, and J. D. Gunton, “Coherence resonance in chaotic systems,” Europhysics Letters, vol. 56, no. 3, pp. 347–353, 2001.
[83]
L. S. Tsimring and A. Pikovsky, “Noise-induced dynamics in bistable systems with delay,” Physical Review Letters, vol. 87, no. 25, Article ID 250602, 4 pages, 2001.
[84]
L. Nunney, “The effect of long time delays in predator-prey systems,” Theoretical Population Biology, vol. 27, no. 2, pp. 202–221, 1985.
[85]
M. C. Mackey, “Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors,” Journal of Economic Theory, vol. 48, no. 2, pp. 497–509, 1989.
[86]
M. Arizaleta Arteaga, M. Valencia, M. Sciamanna, H. Thienpont, M. López-Amo, and K. Panajotov, “Experimental evidence of coherence resonance in a time-delayed bistable system,” Physical Review Letters, vol. 99, no. 2, Article ID 023903, 4 pages, 2007.
[87]
I. Gatare, M. Sciamanna, A. Locquet, and K. Panajotov, “Influence of polarization mode competition on the synchronization of two unidirectionally coupled vertical-cavity surface-emitting lasers,” Optics Letters, vol. 32, no. 12, pp. 1629–1631, 2007.
[88]
M. A. Arteaga, H. J. Unold, J. M. Ostermann, R. Michalzik, H. Theinpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity—part I: theoretical analysis,” IEEE Journal of Quantum Electronics, vol. 42, no. 2, pp. 89–101, 2006.
[89]
M. A. Arteaga, M. López-Amo, H. Thienpont, and K. Panajotov, “Role of external cavity reflectivity for achieving polarization control and stabilization of vertical cavity surface emitting laser,” Applied Physics Letters, vol. 90, no. 3, Article ID 031117, 3 pages, 2007.
[90]
A. Locquet, F. Rogister, M. Sciamanna, P. Mégret, and M. Blondel, “Two types of synchronization in unidirectionally coupled chaotic external-cavity semiconductor lasers,” Physical Review E, vol. 64, no. 4, Article ID 045203(R), 4 pages, 2001.
[91]
M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Physical Review E, vol. 75, no. 5, Article ID 056213, 10 pages, 2007.