全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

DOI: 10.1155/2010/501956

Full-Text   Cite this paper   Add to My Lib

Abstract:

ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology. 1. Introduction Since the first demonstration of laser emission from a ruby crystal (chromium-doped corundum) in 1960 [1], hundreds of crystals and glasses doped with rare-earth ions have been fabricated and utilized in solid-state lasers to generate coherent emissions at different wavelengths. In contrast to crystals, glasses do not only have broad laser transitions which are essential conditions for wavelength tuning and ultrashort pulses generation but also have broad absorption spectra that relieve the wavelength tolerance for the pump sources. Most importantly, single-mode optical fibers, as the most flexible and compact gain media for high-efficiency and excellent beam-quality laser generation, are mostly drawn from glasses. Although crystalline fibers can be drawn using techniques of edge-defined film-fed growth [2], micropulling-down [3], and laser heated pedestal growth [4], their cores cannot be precisely controlled to be small enough to ensure exclusive single-transverse-mode guiding and their lengths are also technically limited. To date, silicate, phosphate, fluoride, and chalcogenide glasses can be drawn into single-mode fibers. A variety of lasers have also been demonstrated in these glass fibers. The spectral range of glass fiber lasers can cover from ultraviolet (UV) to mid-infrared and the output power of a single-element fiber laser can be up to 6 kilo-watts [5]. In contrast to other lasers, the attractive features of fiber lasers include outstanding heat-dissipating capability, excellent beam quality, high optical conversion efficiency, simplicity and compactness, high single-pass gain, low laser threshold, and broad gain

References

[1]  T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493–494, 1960.
[2]  H. E. Labelle, “EFG, the invention and application to sapphire growth,” Journal of Crystal Growth, vol. 50, pp. 8–7, 1980.
[3]  A. El Hassouni, K. Lebbou, C. Goutaudier, G. Boulon, A. Yoshikawa, and T. Fukuda, “SBN single crystal fibers grown by micro-pulling down technique,” Optical Materials, vol. 24, no. 1-2, pp. 419–424, 2003.
[4]  Y. Ji, S. Zhao, Y. Huo, H. Zhang, M. Li, and C. Huang, “Growth of lithium triborate (LBO) single crystal fiber by the laser-heated pedestal growth method,” Journal of Crystal Growth, vol. 112, no. 1, pp. 283–286, 1991.
[5]  V. P. Gapontsev, “High power fiber laser and it’s application,” in Proceedings of the 4th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, Russia, June 2008.
[6]  T. Qiu, L. Li, A. Schülzgen, et al., “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technology Letters, vol. 16, no. 12, pp. 2592–2594, 2004.
[7]  A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Optics Express, vol. 14, no. 16, pp. 7087–7092, 2006.
[8]  R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity A S chalcogenide fibers,” Journal of the Optical Society of America B, vol. 21, no. 6, pp. 1146–1155, 2004.
[9]  J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, et al., “Nonlinear properties of chalcogenide glass fibers,” Journal of Optoelectronics and Advanced Materials, vol. 8, no. 6, pp. 2148–2155, 2006.
[10]  T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electronics Letters, vol. 33, no. 5, pp. 414–416, 1997.
[11]  A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Applied Physics Letters, vol. 70, no. 10, pp. 1230–1232, 1997.
[12]  L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE Journal of Quantum Electronics, vol. 37, no. 9, pp. 1127–1137, 2001.
[13]  R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5? m,” IEEE Photonics Technology Letters, vol. 20, pp. 123–125, 2008.
[14]  X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78? m ZBLAN fiber laser,” Optics Letters, vol. 32, no. 1, pp. 26–28, 2007.
[15]  M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave -doped silica and fluoride fiber lasers,” Applied Physics B, vol. 90, no. 1, pp. 35–41, 2008.
[16]  S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24?W mid-infrared Er:ZBLAN fiber laser,” Optics Letters, vol. 34, no. 20, pp. 3062–3064, 2009.
[17]  Y. Miyajima, T. Komukai, T. Sugawa, and T. Yamamoto, “Rare earth-doped fluoride fiber amplifiers and fiber lasers,” Optical Fiber Technology, vol. 1, no. 1, pp. 35–47, 1994.
[18]  D. S. Funk and J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 1, no. 3, pp. 784–791, 1995.
[19]  K. Ohsawa and T. Shibata, “preparation and characterization of Zr -Ba -La -NaF-Al glass optical fibers,” Journal of Lightwave Technology, vol. 2, no. 5, pp. 602–606, 1984.
[20]  P. W. France, S. F. Carter, C. R. Day, and M. W. Moore, Optical Properties and Applications in Fluoride Glasses, John Wiley & Sons, Hoboken, NJ, USA, 1989.
[21]  A. Comyns, Fluoride Glasses, John Wiley & Sons, Chichester, UK, 1989.
[22]  J. M. Parker, “Fluoride glasses,” Annual Review of Materials Science, vol. 19, pp. 21–41, 1989.
[23]  P. Klocek and G. H. Sigel, Infrared Fiber Optics, SPIE, Bellingham, Wash, USA, 1989.
[24]  P. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibers, Blackie and Son, London, UK, 1990.
[25]  I. Aggarwal and G. Lu, Fluoride Glass Fiber Optics, Academic Press, Boston, Mass, USA, 1991.
[26]  F. Gan, “Optical properties of fluoride glasses: a review,” Journal of Non-Crystalline Solids, vol. 184, no. 1, pp. 9–20, 1995.
[27]  J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and C. F. Rapp, Infrared Fiber Optics, CRC Press, Boca Raton, Fla, USA, 1998.
[28]  J. A. Hamrrington, Infrared Fibers and Their Applications, SPIE, Bellingham, Wash, USA, 2004.
[29]  M. Poulain, M. Poulain, and J. Lucas, “Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au ,” Materials Research Bulletin, vol. 10, no. 4, pp. 243–246, 1975.
[30]  K. Ohsawa, T. Shibata, K. Nakamura, and S. Yoshida, “Fluorozirconate glasses for infrared transmitting optical fibers,” in Proceedings of the 7th European Conference on Optical Communication (ECOC), pp. 1.1-1–1.1-4, Copenhagen, Danmark, September 1981.
[31]  T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Japanese Journal of Applied Physics, vol. 25, no. 6, pp. L468–L470, 1986.
[32]  S. Mitachi and T. Manabe, “Fluoride glass fiber for infrared transmission,” Japanese Journal of Applied Physics, vol. 20, pp. L313–L314, 1980.
[33]  S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride-glass-cladded optical fibers for mid-infra-red ray transmission,” Electronics Letters, vol. 17, no. 17, pp. 591–592, 1981.
[34]  S. Mitachi, T. Miyashita, and T. Manabe, “Preparation of fluoride optical fibers for transmission in the mid-infrared,” Physics and Chemistry of Glasses, vol. 23, no. 6, pp. 196–201, 1982.
[35]  D. C. Tran, C. F. Fisher, and G. H. Sigel Jr., “Fluoride glass performs prepared by a rotation casting process,” Electronics Letters, vol. 18, pp. 657–658, 1982.
[36]  H. Tokiwa, Y. Mimura, T. Nakai, and O. Shinbori, “Fabrication of long single-mode and multimode fluoride glass fibers by the double-crucible technique,” Electronics Letters, vol. 21, no. 24, pp. 1131–1132, 1985.
[37]  J. Lucas, M. Chanthanasinh, M. Poulain, M. Poulain, P. Brun, and M. J. Weber, “Preparation and optical properties of neodymium fluorozirconate glasses,” Journal of Non-Crystalline Solids, vol. 27, no. 2, pp. 273–283, 1978.
[38]  M. C. Brierley and P. W. France, “Neodymium-doped fluorozirconate fiber laser,” Electronics Letters, vol. 23, no. 16, pp. 815–817, 1987.
[39]  M. C. Brierley, P. W. France, M. W. Moore, and S. T. Davey, “Rare-earth-doped fluorozirconate fiber lasers,” in Conference on Lasers and Electro-Optics (CLEO), Anaheim, Calif, USA, 1988, V7, TUM29.
[40]  W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3? m fluoride fiber laser,” Electronics Letters, vol. 24, no. 1, pp. 28–29, 1988.
[41]  M. C. Brierley and C. A. Millar, “Amplification and lasing at 1350?nm in a neodymium doped fluorozirconate fibre,” Electronics Letters, vol. 24, no. 7, pp. 438–439, 1988.
[42]  L. Wetenkamp, “Efficient CW operation of a 2.9? m -doped fluorozirconate fibre laser pumped at 640?nm,” Electronics Letters, vol. 26, no. 13, pp. 883–884, 1990.
[43]  C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fibre laser at 3.22 m,” Electronics Letters, vol. 34, no. 9, pp. 893–894, 1998.
[44]  J. Schneider, “Fluoride fibre laser operating at 3.9? m,” Electronics Letters, vol. 31, no. 15, pp. 1250–1251, 1995.
[45]  M. C. Brierley and P. W. France, “Continuous wave lasing at 2.7? m in an erbium-doped fluorozirconate fiber,” Electronics Letters, vol. 24, no. 15, pp. 935–937, 1988.
[46]  Toebben, “CW lasing at 3.45? m in erbium-doped fluorozirconate fibres,” Frequenz, vol. 45, no. 9-10, pp. 250–252, 1991.
[47]  H. Toebben, “Room temperature CW fibre laser at 3·5? m in -doped ZBLAN glass,” Electronics Letters, vol. 28, no. 14, pp. 1361–1362, 1992.
[48]  R. Allen and L. Esterowitz, “CW diode pumped 2.3? m fiber laser,” Applied Physics Letters, vol. 55, no. 8, pp. 721–722, 1989.
[49]  Z. Meng, J. Kamebayashi, M. Higashihata, et al., “1.55- m Ce-Er-ZBLAN fiber laser operation under 980-nm pumping: experiment and simulation,” IEEE Photonics Technology Letters, vol. 14, no. 5, pp. 609–611, 2002.
[50]  C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “Up-conversion cascade laser at 1.7? with simultaneous 2.7? m lasing in erbium ZBLAN fibre,” Electronics Letters, vol. 31, no. 5, pp. 373–374, 1995.
[51]  G. Androz, M. Bernier, D. Faucher, and R. Vallee, “2.3?W single transverse mode thulium-doped ZBLAN fiber laser at 1480?nm,” Optics Express, vol. 16, no. 20, pp. 16019–16031, 2008.
[52]  S. D. Jackson, “8.8?W diode-cladding-pumped , doped fluoride fibre laser,” Electronics Letters, vol. 37, no. 13, pp. 821–822, 2001.
[53]  S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86? m,” Optics Letters, vol. 29, no. 4, pp. 334–336, 2004.
[54]  J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a -doped fluoride fiber laser with a 3.9- m emission wavelength,” Applied Optics, vol. 36, no. 33, pp. 8595–8600, 1997.
[55]  S. D. Jackson, “Continuous wave 2.9? m dysprosium-doped fluoride fiber laser,” Applied Physics Letters, vol. 83, no. 7, pp. 1316–1318, 2003.
[56]  Y. Durteste, M. Monerie, J. Y. Allain, and H. Poignant, “Amplification and lasing at 1.3? m in praseodymium-doped fluorozirconate fibres,” Electronics Letters, vol. 27, no. 8, pp. 626–628, 1991.
[57]  J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02? m,” Electronics Letters, vol. 28, no. 11, pp. 988–989, 1992.
[58]  T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable doped fluoride fibre laser operating in 1.3? m band,” Electronics Letters, vol. 29, no. 9, pp. 755–756, 1993.
[59]  N. J. Vasa, S. Nagaoka, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Widely tunable Ce- and Er-codoped fluorozirconate fiber laser with 975-nm laser diode pumping,” IEEE Photonics Technology Letters, vol. 17, no. 4, pp. 759–761, 2005.
[60]  M. Pollnau, Ch. Ghisler, W. Luthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6? m,” Optics Letters, vol. 22, no. 9, pp. 612–614, 1997.
[61]  J. Schneider, “Mid-infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technology Letters, vol. 7, no. 4, pp. 354–356, 1995.
[62]  R. G. Smart, J. N. Carter, D. C. Hanna, and A. C. Tropper, “Erbium doped fluorozirconate fibre laser operating at 1.66 and 1.72? m,” Electronics Letters, vol. 26, no. 10, pp. 649–651, 1990.
[63]  L. Esterowitz, R. Allen, G. Kintz, L. Aggarwal, and R. J. Ginther, “Laser emission in , doped fluorozirconate glass at 2.55, 1.88, and 2.70? m,” in Proceedings of the Conference on Laser and Electro-Optics (CLEO), pp. 318–320, Anaheim, Calif, USA, 1988.
[64]  J. Y. Allain, M. Monerie, and H. Poignant, “Erbium-doped fluorozirconate single-mode fibre lasing at 2.71? m,” Electronics Letters, vol. 25, no. 1, pp. 28–29, 1989.
[65]  H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped fibre laser operation between 2.7-2.8? m,” Electronics Letters, vol. 26, no. 22, pp. 1836–1838, 1990.
[66]  R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the transition in erbium,” Applied Physics Letters, vol. 56, no. 17, pp. 1635–1637, 1990.
[67]  Ch. Frerichs, “Efficient -doped CW fluorozirconate fiber laser operating at 2.7? m pumped at 980?nm,” International Journal of Infrared and Millimeter Waves, vol. 15, no. 4, pp. 635–649, 1994.
[68]  J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient : -codoped CW fluorozirconate fiber laser operating at 2.7? m,” International Journal of Infrared and Millimeter Waves, vol. 15, no. 11, pp. 1907–1922, 1994.
[69]  S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71? m laser output in erbium-doped ZBLAN fibers,” Optics Communications, vol. 116, no. 1–3, pp. 81–86, 1995.
[70]  S. Bedo, W. Luthy, and H. P. Weber, “Limits of the output power in :ZBLAN singlemode fibre lasers,” Electronics Letters, vol. 31, no. 3, pp. 199–200, 1995.
[71]  M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150?mW unsaturated output power at 3? m from a single-mode-fiber erbium cascade laser,” Applied Physics Letters, vol. 66, no. 26, pp. 3564–3566, 1995.
[72]  S. D. Jackson, “High-power erbium cascade fibre laser,” Electronics Letters, vol. 45, no. 16, pp. 830–832, 2009.
[73]  M. Pollnau, R. Spring, Ch. Ghisler, S. Wittwer, W. Luthy, and H. P. Weber, “Efficiency of erbium 3- m crystal and fiber lasers,” IEEE Journal of Quantum Electronics, vol. 32, no. 4, pp. 657–663, 1996.
[74]  E. Poppe, B. Srinivasan, and R. K. Jain, “980?nm diode-pumped continuous wave mid-IR (2.7? m) fibre laser,” Electronics Letters, vol. 34, no. 24, pp. 2331–2333, 1998.
[75]  B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400?mW) diode-pumped 2.7? m Er:ZBLAN fibre lasers using enhanced Er-Er cross-relaxation processes,” Electronics Letters, vol. 35, no. 16, pp. 1338–1340, 1999.
[76]  B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7? m fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Optics Express, vol. 4, no. 12, pp. 490–495, 1999.
[77]  S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3- m fiber laser,” Optics Letters, vol. 24, no. 16, pp. 1133–1135, 1999.
[78]  T. Sandrock, D. Fischer, P. Glas, M. Leitner, M. Wrage, and A. Diening, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8? m,” Optics Letters, vol. 24, no. 18, pp. 1284–1286, 1999.
[79]  P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in -doped and , -codoped ZBLAN glasses,” Physical Review B, vol. 62, no. 2, pp. 856–864, 2000.
[80]  S. D. Jackson, T. A. King, and M. Pollnau, “Efficient high power operation of erbium 3? m fibre laser diode-pumped at 975?nm,” Electronics Letters, vol. 36, no. 3, pp. 223–224, 2000.
[81]  S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3? m fibre lasers,” Journal of Modern Optics, vol. 47, no. 11, pp. 1987–1994, 2000.
[82]  N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped 120?nm wavelength-tunable CW mid-IR fibre laser,” Electronics Letters, vol. 36, no. 9, pp. 791–792, 2000.
[83]  V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in -doped fluoride glasses,” Physical Review B, vol. 63, no. 20, Article ID 205107, 15 pages, 2001.
[84]  M. Pollnau and S. D. Jackson, “Erbium 3- m fiber lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 7, no. 1, pp. 30–40, 2001.
[85]  M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3- m fiber lasers,” IEEE Journal of Quantum Electronics, vol. 38, no. 2, pp. 162–169, 2002.
[86]  D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7? m cladding-pumped / codoped ZBLAN fibre laser,” Optics Communications, vol. 236, no. 4–6, pp. 379–385, 2004.
[87]  X. Zhu and R. Jain, “Numerical analysts and experimental results of high-power Er/Pr:ZBLAN 2.7? m fiber lasers with different pumping designs,” Applied Optics, vol. 45, no. 27, pp. 7118–7125, 2006.
[88]  X. Zhu and R. Jain, “Compact 2?W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Optics Letters, vol. 32, no. 16, pp. 2381–2383, 2007.
[89]  X. Zhu and R. Jain, “Watt-level 100-nm tunable 3- m fiber laser,” IEEE Photonics Technology Letters, vol. 20, no. 2, pp. 156–158, 2008.
[90]  X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8? m avelength range,” Optics Letters, vol. 33, no. 14, pp. 1578–1580, 2008.
[91]  M. Bernier, D. Faucher, N. Caron, and R. Vallee, “Highly stable and efficient erbium-doped 2.8? m all fiber laser,” Optics Express, vol. 17, no. 19, pp. 16941–16946, 2009.
[92]  D. S. Tucker, E. C. Ethridge, G. A. Smith, and G. Workman, “Effects of gravity on ZBLAN glass crystallization,” Annals of the New York Academy of Sciences, vol. 1027, pp. 129–137, 2004.
[93]  J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35? m in thulium-doped fluorozirconate fibre,” Electronics Letters, vol. 25, no. 24, pp. 1660–1662, 1989.
[94]  R. M. Percival, D. Szebesta, and S. T. Davey, “Highly efficient CW cascade operation of 1.47 and 1.82? m transitions in Tm-doped fluoride fibre laser,” Electronics Letters, vol. 28, no. 20, pp. 1866–1868, 1992.
[95]  R. Allen, L. Esterowitz, and I. Aggarwal, “Efficient 1.46? m thulium fiber laser via a cascade process,” IEEE Journal of Quantum Electronics, vol. 29, no. 2, pp. 303–306, 1993.
[96]  R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitized CW fluoride fibre laser operating on the 1.47? m transition,” Electronics Letters, vol. 29, no. 12, pp. 1054–1056, 1993.
[97]  T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Efficient upconversion pumping at 1.064? m of -doped fluoride fibre laser operating around 1.47? m,” Electronics Letters, vol. 28, no. 9, pp. 830–832, 1992.
[98]  R. M. Percival, D. Szebesta, and J. R. Williams, “Highly efficient 1.064? m upconversion pumped 1.47? m thulium doped fluoride fibre laser,” Electronics Letters, vol. 30, no. 13, pp. 1057–1058, 1994.
[99]  T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47? m,” IEEE Journal of Quantum Electronics, vol. 31, no. 11, pp. 1880–1889, 1995.
[100]  Y. Miyajima, T. Komukai, and T. Sugawa, “1-W CW Tm-doped fluoride fibre laser at 1.47? m,” Electronics Letters, vol. 29, no. 8, pp. 660–661, 1993.
[101]  R. M. El-Agmy, W. Luthy, Th. Graf, and H. P. Weber, “1.47? m :ZBLAN fibre laser pumped at 1.064? m,” Electronics Letters, vol. 39, no. 6, pp. 507–508, 2003.
[102]  G. Androz, D. Faucher, M. Bernier, and R. Vallee, “Monolithic fluoride-fiber laser at 1480?nm using fiber Bragg gratings,” Optics Letters, vol. 32, no. 10, pp. 1302–1304, 2007.
[103]  R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5? m,” Electronics Letters, vol. 27, no. 21, pp. 1912–1913, 1991.
[104]  M. C. Brierley, P. W. France, and C. A. Millar, “Lasing at 2.08? m and 1.38? m in a holmium doped fluorozirconate fiber laser,” Electronics Letters, vol. 24, no. 9, pp. 539–540, 1988.
[105]  R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “High-efficiency CW operation of 890?nm pumped holmium fluoride fibre laser,” Electronics Letters, vol. 28, no. 22, pp. 2064–2066, 1992.
[106]  J. Y. Allain, M. Monerie, and H. Poignant, “High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04? m,” Electronics Letters, vol. 27, no. 17, pp. 1513–1515, 1991.
[107]  L. Wetenkamp, “Efficient CW operation of a 2.9? m -doped fluorozirconate fibre laser pumped at 640?nm,” Electronics Letters, vol. 26, no. 13, pp. 883–884, 1990.
[108]  T. Sumiyoshi and H. Sekita, “Dual-wavelength continuous-wave cascade oscillation at 3 and 2? m with a holmium-doped fluoride-glass fiber laser,” Optics Letters, vol. 23, no. 23, pp. 1837–1839, 1998.
[109]  T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- m cascade :ZBLAN fiber laser and its medical applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 936–943, 1999.
[110]  S. D. Jackson, “Singly -doped fluoride fibre laser operating at 2.92? m,” Electronics Letters, vol. 40, no. 22, pp. 1400–1401, 2004.
[111]  F. Z. Qamar, T. A. King, S. D. Jackson, and Y. H. Tsang, “Holmium, praseodymium-doped fluoride fiber laser operating near 2.87? m and pumped with a Nd:YAG laser,” Journal of Lightwave Technology, vol. 23, no. 12, pp. 4315–4320, 2005.
[112]  S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Optics Letters, vol. 32, no. 17, pp. 2496–2498, 2007.
[113]  S. D. Jackson, “High-power and highly efficient diode-claddingpumped holmium-doped fluoride fiber laser operating at 2.94? m,” Optics Letters, vol. 34, no. 15, pp. 2327–2329, 2009.
[114]  S. D. Jackson, “Singly -doped fluoride fibre laser operating at 2.92? m,” Electronics Letters, vol. 40, no. 22, pp. 1400–1401, 2004.
[115]  D. V. Talavera and E. B. Mejia, “Holmium-doped fluoride fiber laser at 2950?nm pumped at 1175?nm,” Laser Physics, vol. 16, no. 3, pp. 436–440, 2006.
[116]  H. Tobben, Neue faserlaser für das nahe und mittlere infrarot, dissertation, Technische Universit?t Braunschweig, Braunschweig, Germany, 1993.
[117]  Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96? m dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3? m,” Optics Express, vol. 14, no. 2, pp. 678–685, 2006.
[118]  W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3? m fluoride fiber laser,” Electronics Letters, vol. 24, no. 1, pp. 28–29, 1988.
[119]  D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 m region,” Electronics Letters, vol. 24, no. 17, pp. 1068–1069, 1988.
[120]  T. Sugawa, E. Yoshida, Y. Miyajima, and M. Nakazawa, “1.6?ps Pulse generation from a 1.3? m -doped fluoride fibre laser,” Electronics Letters, vol. 29, no. 10, pp. 902–903, 1993.
[121]  M. J. Guy, D. U. Noske, A. Boskovic, and J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber lasers,” Optics Letters, vol. 19, no. 11, pp. 828–830, 1994.
[122]  L. F. Johnson and H. J. Guggenheim, “Infrared-pumped visible laser,” Applied Physics Letters, vol. 19, no. 2, pp. 44–47, 1971.
[123]  R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electronics Letters, vol. 23, no. 1, pp. 32–34, 1987.
[124]  K. Okada, K. Miura, I. Masuda, and T. Yamashita, “Upconversion fluorescences in Al -Zr based fluoride glass containing Er ,” Materials Science Forum, vol. 32-33, pp. 523–528, 1988.
[125]  S. Ferber, V. Gaebler, and H.-J. Eichler, “Violet and blue upconversion-emission from erbium-doped ZBLAN-fibers with red diode laser pumping,” Optical Materials, vol. 20, no. 3, pp. 211–215, 2002.
[126]  J. Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electronics Letters, vol. 28, no. 2, pp. 111–113, 1992.
[127]  R. M. El-Agmy, “Upconversion CW laser at 284 nm in a Nd:YAG-pumped double-cladding thulium-doped ZBLAN fiber laser,” Laser Physics, vol. 18, no. 6, pp. 803–806, 2008.
[128]  M. P. Le Flohic, J. Y. Allain, G. M. Stephan, and G. Maze, “Room-temperature continuous-wave upconversion laser at 455?nm in a fluorozirconate fiber,” Optics Letters, vol. 19, no. 23, pp. 1982–1984, 1994.
[129]  R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230?mW of blue light from a thulium-doped upconversion fiber laser,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 3, no. 4, pp. 1100–1102, 1997.
[130]  G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in -doped ZBLAN glass fiber,” IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1818–1820, 2005.
[131]  H. Zellmer, P. Riedel, and A. Tunnermann, “Visible upconversion lasers in praseodymium-ytterbium-doped fibers,” Applied Physics B, vol. 69, no. 5, pp. 417–421, 1999.
[132]  P. Xie and T. R. Gosnell, “Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions,” Optics Letters, vol. 20, pp. 1014–1016, 1995.
[133]  M. Zeller, H. G. Limberger, and T. Lasser, “Tunable - -doped all-fiber upconversion laser,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 194–196, 2003.
[134]  T. Sandrock, H. Scheife, E. Heumann, and G. Huber, “High-power continuous-wave upconversion fiber laser at room temperature,” Optics Letters, vol. 22, no. 11, pp. 808–810, 1997.
[135]  D. S. Funk and J. G. Eden, “Laser diode-pumped holmium-doped fluorozirconate glass fiber laser in the green ( 544–549?nm): power conversion efficiency, pump acceptance bandwidth, and excited-state kinetics,” IEEE Journal of Quantum Electronics, vol. 37, no. 8, pp. 980–992, 2001.
[136]  D. S. Funk, J. W. Carlson, and J. G. Eden, “Ultraviolet (381?nm), room temperature laser in neodymium-doped fluorozirconate fibre,” Electronics Letters, vol. 30, no. 22, pp. 1859–1860, 1994.
[137]  D. S. Funk, J. W. Carlson, and J. G. Eden, “Room-temperature fluorozirconate glass fiber laser in the violet (412?nm),” Optics Letters, vol. 20, pp. 1474–1476, 1995.
[138]  T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electronics Letters, vol. 27, no. 20, pp. 1785–1786, 1991.
[139]  J. F. Massicott, M. C. Brierley, R. Wyatt, S. T. Davey, and D. Szebesta, “Low threshold, diode pumped operation of a green, doped fluoride fibre laser,” Electronics Letters, vol. 29, no. 24, pp. 2119–2120, 1993.
[140]  D. Piehler and D. Craven, “11.7?mW green InGaAs-laser-pumped erbium fibre laser,” Electronics Letters, vol. 30, no. 21, pp. 1759–1761, 1994.
[141]  Y. Chen, D. Meichenin, and F. Auzel, “Room-temperature photon avalanche up-conversion in Er-doped fluoride glass and fibre pumped at 700?nm,” Journal of Physics: Condensed Matter, vol. 7, no. 17, pp. 3363–3370, 1995.
[142]  A. Saissy, B. Dussardier, G. Maze, G. Monnom, and S. A. Wade, “Blue upconversion emission in -doped fluoride fiber,” Optical Fiber Technology, vol. 2, no. 3, pp. 249–252, 1996.
[143]  C. L. Pope, B. R. Reddy, and S. K. Nash-Stevenson, “Efficient violet upconversion signal from a fluoride fiber doped with erbium,” Optics Letters, vol. 22, no. 5, pp. 295–297, 1997.
[144]  S. R. Bullock, B. R. Reddy, P. Venkateswarlu, S. K. Nash-Stevenson, and J. C. Fajardo, “Energy upconversion and spectroscopic studies of ZBLAN: ,” Optical and Quantum Electronics, vol. 29, no. 11, pp. 83–92, 1997.
[145]  J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electronics Letters, vol. 26, no. 3, pp. 166–168, 1990.
[146]  S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electronics Letters, vol. 28, no. 13, pp. 1243–1244, 1992.
[147]  S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Applied Physics Letters, vol. 67, pp. 1815–1817, 1995.
[148]  H. Zellmer, S. Buteau, A. Tunnermann, and H. Welling, “All fibre laser system with 0.1?W output power in blue spectral range,” Electronics Letters, vol. 33, no. 16, pp. 1383–1384, 1997.
[149]  P. Laperle, A. Chandonnet, and R. Vallee, “Photoinduced absorption in thulium-doped ZBLAN fibers,” Optics Letters, vol. 20, no. 24, pp. 2484–2486, 1995.
[150]  I. J. Booth, J.-L. Archambault, and B. F. Ventrudo, “Photodegradation of near-infrared-pumped -doped ZBLAN fiber upconversion lasers,” Optics Letters, vol. 21, no. 5, pp. 348–350, 1996.
[151]  P. Laperle, A. Chandonnet, and R. Vallee, “Photobleaching of thulium-doped ZBLAN fibers with visible light,” Optics Letters, vol. 22, no. 3, pp. 178–180, 1997.
[152]  G. Qin, S. Huang, Y. Feng, A. Shirakawa, M. Musha, and K.-I. Ueda, “Photodegradation and photocuring in the operation of a blue upconversion fiber laser,” Journal of Applied Physics, vol. 97, no. 12, pp. 1–3, 2005.
[153]  I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped ZBLAN upconversion fiber laser at 482?nm,” IEEE Journal of Quantum Electronics, vol. 32, no. 1, pp. 118–123, 1996.
[154]  S. Guy, D. P. Shepherd, M. F. Joubert, B. Jacquier, and H. Poignant, “Blue avalanche upconversion in Tm:ZBLAN fiber,” Journal of the Optical Society of America B, vol. 14, no. 4, pp. 926–934, 1997.
[155]  G. Tohmon, H. Sato, J. Ohya, and T. Uno, “Thulium:ZBLAN blue fiber laser pumped by two wavelengths,” Applied Optics, vol. 36, no. 15, pp. 3381–3386, 1997.
[156]  E. B. Mejia, A. N. Starodumov, and Yu. O. Barmenkov, “Blue and infrared up-conversion in -doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18? m,” Applied Physics Letters, vol. 74, no. 11, pp. 1540–1542, 1999.
[157]  F. Duclos and P. Urquhart, “Thulium-doped ZBLAN blue upconversion fiber laser: theory,” Journal of the Optical Society of America B, vol. 12, no. 4, pp. 709–717, 1995.
[158]  R. Paschotta, P. R. Barber, A. C. Tropper, and D. C. Hanna, “Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers,” Journal of the Optical Society of America B, vol. 14, no. 5, pp. 1213–1218, 1997.
[159]  G. Qin, S. Huang, Y. Feng, A. Shirakawa, M. Musha, and K.-I. Ueda, “Power scaling of doped ZBLAN blue upconversion fiber lasers: modeling and experiments,” Applied Physics B, vol. 82, no. 1, pp. 65–70, 2006.
[160]  W. Tian and B. R. Reddy, “Ultraviolet upconversion in thulium-doped fluorozirconate fiber observed under two-color excitation,” Optics Letters, vol. 26, no. 20, pp. 1580–1582, 2001.
[161]  J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 610, 635, 695, 715, 885 and 910?nm in praseodymium-doped fluorozirconate fibre,” Electronics Letters, vol. 27, no. 2, pp. 189–191, 1991.
[162]  J. Y. Allain, M. Monerie, and H. Poignant, “Red upconversion Yb-sensitised Pr fluoride fibre laser pumped in 0.8? m region,” Electronics Letters, vol. 27, no. 13, pp. 1156–1157, 1991.
[163]  R. G. Smart, J. N. Carter, A. C. Tropper, et al., “CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions,” Optics Communications, vol. 86, no. 3-4, pp. 333–340, 1991.
[164]  R. G. Smart, D. C. Hanna, A. C. Tropper, S. T. Davey, S. F. Carter, and D. Szebesta, “CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped -doped fluoride fibre,” Electronics Letters, vol. 27, no. 14, pp. 1307–1309, 1991.
[165]  Y. Zhao and S. Poole, “Efficient blue -doped fluoride fibre upconversion laser,” Electronics Letters, vol. 30, no. 12, pp. 967–968, 1994.
[166]  D. M. Baney, G. Rankin, and K.-W. Chang, “Blue -doped ZBLAN fiber upconversion laser,” Optics Letters, vol. 21, no. 17, pp. 1372–1374, 1996.
[167]  A. C. Tropper, J. N. Carter, R. D. T. Lauder, D. C. Hanna, S. T. Davey, and D. Szebesta, “Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser,” Journal of the Optical Society of America B, vol. 11, pp. 886–893, 1994.
[168]  P. Peterson and M. P. Sharma, “Modelling of threshold and extraction efficiency in ZBLAN upconversion fibre lasers using two-photon pumping,” Optical and Quantum Electronics, vol. 30, no. 3, pp. 161–173, 1998.
[169]  H. M. Pask, A. C. Tropper, and D. C. Hanna, “A -doped ZBLAN fibre upconversion laser pumped by an -doped silica fibre laser,” Optics Communications, vol. 134, no. 1–6, pp. 139–144, 1997.
[170]  D. M. Baney, L. Yang, J. Ratcliff, and K. W. Chang, “Red and orange / doped ZBLAN fibre upconversion lasers,” Electronics Letters, vol. 31, no. 21, pp. 1842–1843, 1995.
[171]  D. M. Baney, G. Rankin, and K. W. Chang, “Simultaneous blue and green upconversion lasing in a laser-diode-pumped / doped fluoride fiber laser,” Applied Physics Letters, vol. 69, no. 12, pp. 1662–1664, 1996.
[172]  D. M. Costantini, H. G. Limberger, T. Lasser, et al., “Actively mode-locked visible upconversion fiber laser,” Optics Letters, vol. 25, no. 19, pp. 1445–1447, 2000.
[173]  T. P. Baraniecki, R. Caspary, and W. Kowalsky, “All-fiber red fiber laser in ring configuration,” Applied Physics B, vol. 83, no. 1, pp. 17–20, 2006.
[174]  S. C. Goh, R. Pattie, C. Byrne, and D. Coulson, “Blue and red laser action in : co-doped fluorozirconate glass,” Applied Physics Letters, vol. 67, pp. 768–770, 1995.
[175]  J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature CW tunable green upconversion holmium fibre laser,” Electronics Letters, vol. 26, no. 4, pp. 261–263, 1990.
[176]  D. S. Funk, J. G. Eden, J. S. Osinski, and B. Lu, “Green, holmium-doped upconversion fibre laser pumped by red semiconductor laser,” Electronics Letters, vol. 33, no. 23, pp. 1958–1960, 1997.
[177]  D. S. Funk, S. B. Stevens, and J. G. Eden, “Excitation spectra of the green Ho: fluorozirconate glass fiber laser,” IEEE Photonics Technology Letters, vol. 5, no. 2, pp. 154–157, 1993.
[178]  D. S. Funk, S. B. Stevens, S. S. Wu, and J. G. Eden, “Tuning, temporal, and spectral characteristics of the green ( 549?nm), holmium-doped fluorozirconate glass fiber laser,” IEEE Journal of Quantum Electronics, vol. 32, no. 4, pp. 638–645, 1996.
[179]  R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 via four-photon coupling in glass,” Physical Review Letters, vol. 24, no. 11, pp. 584–587, 1970.
[180]  N. G. Bondarenko, I. V. Eremina, and V. I. Talanov, “Broadening of spectrum in self-focusing of light in crystals,” JETP Letters, vol. 12, pp. 85–87, 1970.
[181]  C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Applied Physics Letters, vol. 28, no. 4, pp. 216–218, 1976.
[182]  J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800?nm,” Optics Letters, vol. 25, no. 1, pp. 25–27, 2000.
[183]  C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 91–93, 2006.
[184]  C. Xia, M. Kumar, O. P. Kulkarni, et al., “Mid-infrared supercontinuum generation to 4.5? m in ZBLAN fluoride fibers by nanosecond diode pumping,” Optics Letters, vol. 31, no. 17, pp. 2553–2555, 2006.
[185]  C. Xia, M. Kumar, M. -Y. Cheng, et al., “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Optics Express, vol. 15, no. 3, pp. 865–871, 2007.
[186]  M. N. Islam, C. Xia, M. J. Freeman, et al., “Mid-IR super-continuum generation,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 of Proceedings of SPIE, San Jose, Calif, USA, January 2009.
[187]  C. Xia, Z. Xu, M. N. Islam, et al., “10.5?W time-averaged power mid-IR supercontinuum generation extending beyond 4? m with direct pulse pattern modulation,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 2, pp. 422–434, 2009.
[188]  G. Qin, X. Yan, C. Kito, et al., “Supercontinuum generation spanning over three octaves from UV to 3.85? m in a fluoride fiber,” Optics Letters, vol. 34, no. 13, pp. 2015–2017, 2009.
[189]  H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, et al., “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Optics Letters, vol. 33, no. 23, pp. 2861–2863, 2008.
[190]  Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Optics Express, vol. 17, no. 7, pp. 5852–5860, 2009.
[191]  F. G. Omenetto, N. A. Wolchover, M. R. Wehner, et al., “Spectrally smooth supercontinuum from 350?nm to 3? m in sub-centimeter lengths of soft-glass photonic crystal fibers,” Optics Express, vol. 14, no. 11, pp. 4928–4934, 2006.
[192]  J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, et al., “Mid-IR supercontinuum generation from nonsilica microstruetured optical fibers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 3, pp. 738–749, 2007.
[193]  P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, et al., “Over 4000?nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Optics Express, vol. 16, no. 10, pp. 7161–7168, 2008.
[194]  S. D. Jackson, “Direct evidence for laser reabsorption as initial cause for self-pulsing in three-level fibre lasers,” Electronics Letters, vol. 38, no. 25, pp. 1640–1642, 2002.
[195]  D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE Journal of Quantum Electronics, vol. 37, no. 2, pp. 207–217, 2001.
[196]  P. R. Barber, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Infrared-induced photodarkening in Tm-doped fluoride fibers,” Optics Letters, vol. 20, pp. 2195–2197, 1995.
[197]  D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photonics Technology Letters, vol. 18, no. 24, pp. 2686–2688, 2006.
[198]  M. Bernier, D. Faucher, R. Vallee, et al., “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800?nm,” Optics Letters, vol. 32, no. 5, pp. 454–456, 2007.
[199]  T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 11, no. 3, pp. 567–577, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133