全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical Warfare Agents Analyzer Based on Low Cost, Room Temperature, and Infrared Microbolometer Smart Sensors

DOI: 10.1155/2012/808541

Full-Text   Cite this paper   Add to My Lib

Abstract:

Advanced IR emitters and sensors are under development for high detection probability, low false alarm rate, and identification capability of toxic gases. One of the most reliable techniques to identify the gas species is absorption spectroscopy, especially in the medium infrared spectral range, where most of existing toxic compounds exhibit their strongest rotovibrational absorption bands. Following the results obtained from simulations and analysis of expected absorption spectra, a compact nondispersive infrared multispectral system has been designed and developed for security applications. It utilizes a few square millimeters thermal source, a novel design multipass cell, and a smart architecture microbolometric sensor array coupled to a linear variable spectral filter to perform toxic gases detection and identification. This is done by means of differential absorption spectroscopic measurements in the spectral range of the midinfrared. Experimental tests for sensitivity and selectivity have been done with various chemical agents (CAs) gases and a multiplicity of vapour organic compounds (VOCs). Detection capability down to ppm has been demonstrated. 1. Introduction One of the most reliable techniques to identify the gas species is absorption spectroscopy in the medium infrared spectral range, where most of existing toxic compounds exhibit their strongest rotovibrational absorption bands [1, 2]. The present work will describe a compact point sensor for providing early warning in the presence of CAs in the air. Battlefields and urban areas at risk of terroristic attack were the foreseen application scenarios. Wide chemical range and effective identification of targets and rejection of other vapours were given as the key performance objectives. The sensor is based on Active Multispectral Infrared Absorption Spectroscopy in the gas phase and uses 38 spectral channels to represent molecular fingerprints across the LongWave IR spectrum (LWIR). The heart of the sensor is an advanced detector device that integrates microbolometers, optical filter arrays, and front-end electronics on silicon chip. 2. Sensor System The sensor system essentially consists of an IR thermal source, a multipass optical cell, and an array of detectors and filters, plus electronics and software for signal read-out, processing and analysis. Figure 1 shows a scheme of the sensor system. A description of the early design of the sensor system has been reported in [3]. Figure 1: Scheme of the sensor system. The IR radiation emitted by the source is first modulated by a mechanical

References

[1]  Y. Sun and K. Y. Ong, Detection Technologies for Chemical Warfare Agents and Toxic Vapors, CRC Press, 2005.
[2]  M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: simulation,” Journal of Applied Physics, vol. 97, no. 11, Article ID 113101, pp. 1–11, 2005.
[3]  C. Corsi, N. Liberatore, S. Mengali, A. Mercuri, R. Viola, and D. Zintu, “Advanced applications to security of IR smart microbolometers,” in Proceedings of the International Society for Optical Engineering, vol. 6739 of Proceedings of SPIE.
[4]  R. Viola, “High-luminosity multipass cell for infrared imaging spectroscopy,” Applied Optics, vol. 45, no. 12, pp. 2805–2809, 2006.
[5]  S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Applied Spectroscopy, vol. 58, no. 12, pp. 1452–1461, 2004.
[6]  C. Sierra, S. Mengali, M. C. Torquemada et al., “Multicolor microbolometer and VPD PbSe hybrid focal plane sensors for analytical applications,” in Proceedings of the 5th International Symposium on Optronics in Defence and Security (OPTRO '12), 2012.
[7]  A. Mukherjee, I. Dunayevskiy, M. Prasanna et al., “Sub-parts-per-billion level detection of dimethyl methyl phosphonate (DMMP) by quantum cascade laser photoacoustic spectroscopy,” Applied Optics, vol. 47, no. 10, pp. 1543–1548, 2008.
[8]  S. W. Sharpe, T. J. Johnson, P. M. Chu, J. Kleimeyer, and B. Rowland, “Quantitative, infrared spectra of vapor phase chemical agents,” in Proceedings of the Chemical and Biological Sensing IV, vol. 5085 of Proceedings of SPIE, August 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133