We review the temporal dynamics of the laser output spectrum and polarization state of 1.55?μm wavelength single-mode (SM) vertical-cavity surface-emitting lasers (VCSELs) induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS), and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5?fJ. 1. Introduction Dynamical laser output of the vertical-cavity surface-emitting lasers (VCSELs) under injection of an external laser beam has been investigated widely for potential application to pulse timing-jitter reduction, polarization switching, all-optical flip-flop operation, and long-distance fiber transmissions [1–15]. VCSELs are known to be low power-consuming optical signal sources compared to the existing edge-emitting laser diodes (LDs) and to be potentially useful all-optical logic gate devices in a two-dimensional array. Beside the conventional signal source application of the stand-alone VCSELs for relatively short-distance optical communications or interconnects, the injection locking of an external optical beam to the VCSELs allows new application areas of the VCSELs possible and improves fiber transmission properties of the VCSELs’ output. Weak continuous-wave (CW) laser beam injection to a gain-switched VCSEL lowered its pulse timing jitter [2, 3]. Laser pulse beam injection of an orthogonal or circular polarization into a VCSEL caused a high-speed polarization switching (PS) [4–7] or spin-induced polarization oscillation [8, 9]. The PS and induced bistability mechanism of the VCSEL output under a laser beam injection of orthogonal polarization to the VCSEL’s main polarization mode were used for demonstration of all-optical flip-flop operation and optical buffer memory application [10–13]. An
References
[1]
E. Kapon and A. Sirbu, “Long-wavelength VCSELs: power-efficient answer,” Nature Photonics, vol. 3, no. 1, pp. 27–29, 2009.
[2]
J. M. Noriega, A. Valle, and L. Pesquera, “Timing jitter reduction in gain-switched VCSELs induced by external optical injection,” Optical and Quantum Electronics, vol. 40, no. 2–4, pp. 119–129, 2008.
[3]
S. H. Lee, K. H. Kim, V. M. Deshmukh, D. W. Kim, and M. H. Lee, “Injection laser wavelength-dependent timing jitter reduction of gain-switched single-mode VCSELs,” IEEE Journal of Quantum Electronics, vol. 46, no. 9, pp. 1327–1331, 2010.
[4]
K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photonics Technology Letters, vol. 20, no. 10, pp. 779–781, 2008.
[5]
A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm VCSEL subject to orthogonal optical injection,” Optics Express, vol. 17, no. 26, pp. 23637–23642, 2009.
[6]
A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550-nm VCSELs subject to orthogonal optical injection,” IEEE Photonics Technology Letters, vol. 21, no. 17, pp. 1193–1195, 2009.
[7]
V. M. Deshmukh, S. H. Lee, D. W. Kim, K. H. Kim, and M. H. Lee, “Experimental and numerical analysis on temporal dynamics of polarization switching in an injection-locked 1.55-μm wavelength VCSEL,” Optics Express, vol. 19, no. 18, pp. 16934–16949, 2011.
[8]
N. C. Gerhardt, M. Y. Li, H. J?hme, H. H. H?pfner, T. Ackemann, and M. R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 99, no. 15, Article ID 151107, 3 pages, 2011.
[9]
N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Advances in Optical Technologies, vol. 2012, Article ID 268949, 15 pages, 2012.
[10]
T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Applied Physics Letters, vol. 88, no. 10, Article ID 101102, 3 pages, 2006.
[11]
T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 45, no. 11, pp. 1495–1504, 2009.
[12]
S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, “All-optical flip-flop operation based on polarization bistability of conventional-type 1.55-μm wavelength single-mode VCSELs,” Journal of the Optical Society of Korea, vol. 14, no. 2, pp. 137–141, 2010.
[13]
S. H. Lee, H. W. Jung, K. H. Kim et al., “1-GHz All-Optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low-power optical injection,” IEEE Photonics Technology Letters, vol. 22, no. 23, pp. 1759–1761, 2010.
[14]
B. Zhang, X. Zhao, L. Christen et al., “Adjustable chirp injection-locked 1.55-μm VCSELs for enhanced chromatic dispersion compensation at 10-Gbit/s,” in Proceedings on Optical Fiber Communication Conference, San Diego, Calif, USA, February 2008, paper OWT7.
[15]
P. Boffi, A. Boletti, A. Gatto, and M. Martinelli, “VCSEL to VCSEL injection locking for uncompensated 40-km transmission at 10?Gb/s,” in Proceedings on Optical Fiber Communication Conference, San Diego, Calif, USA, March 2009, paper JThA32.
[16]
T. B. Gibbon, K. Prince, T. T. Pham et al., “VCSEL transmission at 10?Gb/s for 20?km single mode fiber WDM-PON without dispersion compensation or injection locking,” Optical Fiber Technology, vol. 17, no. 1, pp. 41–45, 2011.
[17]
D. S. Seo, D. Y. Kim, and H. F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electronics Letters, vol. 32, no. 1, pp. 44–45, 1996.
[18]
K. T. Vu, A. Malinowski, M. A. F. Roelens, and D. J. Richardson, “Detailed comparison of injection-seeded and self-seeded performance of a 1060-nm gain-switched Fabry-Pérot laser diode,” IEEE Journal of Quantum Electronics, vol. 44, no. 7, pp. 645–651, 2008.
[19]
M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Physical Review A, vol. 52, no. 2, pp. 1728–1739, 1995.
[20]
I. Gatare, M. Sciamanna, J. Buesa, H. Thienpont, and K. Panajotov, “Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Applied Physics Letters, vol. 88, no. 10, Article ID 101106, 2006.
[21]
K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Polarization switching in a 1.5?μm wavelength single-mode vertical cavity surface emitting laser under modulated optical beam injection control,” in Proceedings of the Photonics in Switching, San Francisco, Calif, USA, August 2007, paper TuP1.
[22]
J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 5, pp. 765–783, 1997.
[23]
A. E. Siegman, Lasers, chapters 25 and 13, University Science Books, 1986.
[24]
A. Quirce, J. R. Cuesta, A. Hurtado et al., “Dynamic characteristics of an all-optical inverter based on polarization Switching in long-Wavelength VCSELs,” IEEE Journal of Quantum Electronics, vol. 48, no. 5, pp. 588–595, 2012.