全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Collective Micro-Optics Technologies for VCSEL Photonic Integration

DOI: 10.1155/2011/609643

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe the main recent technological approaches that associate micro-optical elements to VCSELs in order to control their output beam and to improve their photonic integration. These approaches imply either a hybrid assembly or a direct integration technique. They are compared with regards to their tolerance to alignment errors and to their ease of implementation onto arrays of devices at a wafer level. In particular, we detail the integration techniques we have developed for self-aligned polymer microlens fabrication for beam collimation and short distance beam focusing. Finally, designs to achieve active micro-optics or to exploit novel nanophotonic effects are discussed. 1. Introduction Due to their unique advantages such as low threshold, parallel operation, symmetrical and circular beam, on-wafer test capability, and high bandwidth modulation, VCSELs now constitute strategic light sources for photonic applications, ranging from optical communications to instrumentation as well as optical storage or printing [1]. Current research on these devices concerns enhancement of emission performances by means of novel confinement designs, spectral extension to UV-visible and mid-infrared ranges, but also improvement of their photonic integration. For this latter issue, precise beam control is strongly in demand. Despite a limited far-field beam divergence, typically in the range from 10° to 20°, (half angle at 1/e2), these laser diodes have indeed to be more and more associated with microoptical elements to improve the performance of the system in which they are inserted and to develop their use in novel application fields. In this paper, we review the main approaches recently proposed in the literature to combine free-space micro-optics with VCSEL arrays. In the first part, we sum up the main requirements for VCSEL beam shaping in function of the aimed application. In Sections 2 and 3, we review different fabrication methods for passive micro-optics integration on VCSELs, from hybrid report to direct fabrication on device surface. In Section 4, we describe recent advances in the field of active micro-optics for VCSEL beam adaptation to a dynamic environment. Finally, we discuss on emerging approaches based on nanostructured integrated lenses. 2. Micro-Optics for VCSELs: Main Requirements Up to now, the major market for VCSEL devices remains short-distance high-speed optical interconnects. In this area, key considerations concern coupling efficiency of VCSEL arrays to optical fibers. This efficiency depends strongly on the laser natural beam divergence

References

[1]  K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Japanese Journal of Applied Physics, vol. 47, no. 1, pp. 1–10, 2008.
[2]  G. Kim, X. Han, and R. T. Chen, “Crosstalk and interconnection distance considerations for board-to-board optical interconnects using 2-D VCSEL and microlens array,” IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 743–745, 2000.
[3]  A. K. Nallani, T. Chen, D. J. Hayes, W. S. Che, and J. B. Lee, “A method for improved VCSEL packaging using MEMS and ink-jet technologies,” Journal of Lightwave Technology, vol. 24, no. 3, pp. 1504–1512, 2006.
[4]  Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Hybrid integration of polymer microlens with VCSEL using drop-on-demand technique,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, vol. 3952 of Proceedings of SPIE, pp. 364–374, January 2000.
[5]  E. Thrush, O. Levi, W. Ha et al., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE Journal of Quantum Electronics, vol. 40, no. 5, pp. 491–498, 2004.
[6]  L. M. Lechuga, J. Tamayo, M. álvarez et al., “A highly sensitive microsystem based on nanomechanical biosensors for genomics applications,” Sensors and Actuators B, vol. 118, no. 1-2, pp. 2–10, 2006.
[7]  J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in Proceedings of the 6th IEEE Conference on SENSORS, pp. 419–422, October 2007.
[8]  R. Michalzik, A. Kroner, and F. Rinaldi, “VCSEL-based optical trapping for microparticle manipulation,” in Vertical-Cavity Surface-Emitting Lasers XIII, K. D. Choquette and C. Lei, Eds., vol. 7229 of Proceedings of SPIE, pp. 722908-1–722908-13, 2009.
[9]  S. Heisig, O. Rudow, and E. Oesterschulze, “Scanning near-field optical microscopy in the near-infrared region using light emitting cantilever probes,” Applied Physics Letters, vol. 77, no. 8, pp. 1071–1073, 2000.
[10]  D. Heinis, C. Gorecki, C. Bringer et al., “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Japanese Journal of Applied Physics 2, vol. 42, no. 12 A, pp. L1469–L1471, 2003.
[11]  K. Goto, Y. J. Kim, S. Mitsugi, K. Suzuki, K. Kurihara, and T. Horibe, “Microoptical two-dimensional devices for the optical memory head of an ultrahigh data transfer rate and density sytem using a vertical cavity surface emitting laser (VCSEL) array,” Japanese Journal of Applied Physics 1, vol. 41, no. 7 B, pp. 4835–4840, 2002.
[12]  C. Gorecki, L. Nieradko, S. Bargiel et al., “On-chip scanning confocal microscope with 3D MEMS scanner and VCSEL feedback detection,” in Proceedings of the 4th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS '07), pp. 2561–2564, June 2007.
[13]  H. Zappe, Fundamentals of Micro-Optics, Cambridge University Press, 2010.
[14]  Y. Fu, “Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,” IEEE Photonics Technology Letters, vol. 13, no. 5, pp. 424–426, 2001.
[15]  I. S. Chung, P. Debernardi, Y. T. Lee, and J. M?rk, “Transverse-mode-selectable microlens verticalcavity surface-emitting laser,” Optics Express, vol. 18, no. 5, pp. 4138–4147, 2010.
[16]  H. L. Chen, D. Francis, T. Nguyen, W. Yuen, G. Li, and C. Chang-Hasnain, “Collimating diode laser beams from a large-area VCSEL-array using microlens array,” IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 506–508, 1999.
[17]  C. Vergnenègre, T. Camps, V. Bardinal, C. Bringer, C. Fontaine, and A. Mu?oz-Yagüe, “Integrated optical detection subsystem for functional genomic analysis biosensor,” in Photonics Applications in Biosensing and Imaging, vol. 5969 of Proceedings of SPIE, pp. 596912.1–596912.10, 2005.
[18]  S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. B?chtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technology Letters, vol. 12, no. 5, pp. 459–461, 2000.
[19]  S. S. Lee, L. Y. Lin, K. S. J. Pister, M. C. Wu, H. C. Lee, and P. Grodzinski, “Passively aligned hybrid integration of 8 × 1 micromachined micro-Fresnel lens arrays and 8 × 1 vertical-cavity surface-emitting laser arrays for free-space optical interconnect,” IEEE Photonics Technology Letters, vol. 7, no. 9, pp. 1031–1033, 1995.
[20]  C. Debaes, M. Vervaeke, V. Baukens et al., “Low-cost microoptical modules for MCM level optical interconnections,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, no. 2, pp. 518–530, 2003.
[21]  H. S. Lee, I. Park, K. S. Jeon, and E. H. Lee, “Fabrication of micro-lenses for optical interconnection using micro ink-jetting technique,” Microelectronic Engineering, vol. 87, no. 5-8, pp. 1447–1450, 2010.
[22]  J. K. Kim, D. U. Kim, B. H. Lee, and K. Oh, “Arrayed multimode fiber to VCSEL coupling for short reach communications using hybrid polymer-fiber lens,” IEEE Photonics Technology Letters, vol. 19, no. 13, pp. 951–953, 2007.
[23]  D. W. Kim, T. W. Lee, M. H. Cho, and H. H. Park, “High-efficiency and stable optical transmitter using VCSEL-direct-bonded connector for optical interconnection,” Optics Express, vol. 15, no. 24, pp. 15767–15775, 2007.
[24]  A. Suzuki, Y. Wakazono, S. Suzuki et al., “High optical coupling efficiency using 45°-ended fibre for low-height and low-cost optical interconnect modules,” Electronics Letters, vol. 44, no. 12, pp. 724–725, 2008.
[25]  E. Bosman, G. Van Steenberge, I. Milenkov et al., “Fully flexible optoelectronic foil,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 16, no. 5, Article ID 5404348, pp. 1355–1362, 2010.
[26]  K. Rastani, M. Orenstein, E. Kapon, and A. C. Von Lehmen, “Integration of planar Fresnel microlenses with vertical-cavity surface-emitting laser arrays,” Optics Letters, pp. 919–921, 1991.
[27]  E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, and L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Applied Optics, vol. 37, no. 14, pp. 2811–2821, 1998.
[28]  Z. Wang, Y. Ning, Y. Zhang et al., “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Optics Express, vol. 18, no. 23, pp. 23900–23905, 2010.
[29]  S. H. Park, Y. Park, H. Kim et al., “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Applied Physics Letters, vol. 80, no. 2, p. 183, 2002.
[30]  C. H. Hou, C. C. Chen, B. J. Pong et al., “GaN-based stacked micro-optics system,” Applied Optics, vol. 45, no. 11, pp. 2396–2398, 2006.
[31]  K. S. Chang, Y. M. Song, and Y. T. Lee, “Microlens fabrication by selective oxidation of composition-graded digital alloy AlGaAs,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 121–123, 2006.
[32]  H. P. Herzig, Micro-Optics, Elements, Systems and Applications, Taylor and Francis, London, UK, 1997.
[33]  H. Ottevaere, R. Cox, H. P. Herzig et al., “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A, vol. 8, no. 7, pp. S407–S429, 2006.
[34]  O. Blum, S. P. Kilcoyne, M. E. Warren et al., “Vertical-cavity surface-emitting lasers with integrated refractive microlenses,” Electronics Letters, vol. 31, no. 1, pp. 44–45, 1995.
[35]  A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electronics Letters, vol. 42, no. 2, pp. 93–94, 2006.
[36]  N. Laurand, C. L. Lee, E. Gu, J. E. Hastie, S. Calvez, and M. D. Dawson, “Microlensed microchip VECSEL,” Optics Express, vol. 15, no. 15, pp. 9341–9346, 2007.
[37]  D. M. Hartmann, S. C. Esener, and O. Kibar, “Precision fabrication of polymer microlens arrays,” United States patent 7.771, 630 B2, 2010.
[38]  C. Gimkiewicz, M. Moser, S. Obi et al., “Wafer-scale replication and testing of micro-optical components for VCSELs,” in Micro-Optics, VCSELs, and Photonic Interconnects, vol. 5453 of Proceedings of SPIE, pp. 13–26, April 2004.
[39]  T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupled packaging of plastic optical fibers on vertical-cavity surface-emitting lasers with patterned polymer guide holes,” Japanese Journal of Applied Physics A, vol. 41, no. 7 B, pp. 4813–4816, 2002.
[40]  K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” Journal of Micromechanics and Microengineering, vol. 14, no. 7, pp. 975–983, 2004.
[41]  C. Reardon, A. Di Falco, K. Welna, and T. Krauss, “Integrated polymer microprisms for free space optical beam deflecting,” Optics Express, vol. 17, no. 5, pp. 3424–3428, 2009.
[42]  U. A. Gracias, N. Tokranova, and J. Castracane, “SU8-based static diffractive optical elements: wafer-level integration with VCSEL arrays,” in Photonics Packaging, Integration, and Interconnects VIII, vol. 6899 of Proceedings of SPIE, p. 68990J, January 2008.
[43]  D. J. Hayes, M. E. Grove, D. B. Wallace, T. Chen, and W. R. Cox, “Ink-jet printing in the manufacturing of electronics, photonics, and displays,” in Nanoscale Optics and Applications, vol. 4809 of Proceedings of SPIE, pp. 94–99, July 2002.
[44]  A. Nallani, T. Chen, J. B. Lee, D. Hayes, and D. Wallace, “Wafer level optoelectronic device packaging using MEMS,” in Smart Sensors, Actuators, and MEMS II, vol. 5836 of Proceedings of SPIE, pp. 116–127, May 2005.
[45]  C. Levallois, V. Bardinal, T. Camps, et al., “VCSEL collimation using self-aligned integrated polymer microlenses,” in Micro-Optics 2008, vol. 6992 of Proceedings of SPIE, p. 69920W, April 2008.
[46]  V. Bardinal, B. Reig, T. Camps et al., “Spotted custom lenses to tailor the divergence of vertical-cavity surface-emitting lasers,” IEEE Photonics Technology Letters, vol. 22, no. 21, Article ID 5560728, pp. 1592–1594, 2010.
[47]  O. Soppera, C. Turck, and D. J. Lougnot, “Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR,” Optics Letters, vol. 34, no. 4, pp. 461–463, 2009.
[48]  V. Bardinal, B. Reig, T. Camps et al., “A microtip self-written on a vertical-cavity surface-emitting laser by photopolymerization,” Applied Physics Letters, vol. 96, no. 5, Article ID 051114, 2010.
[49]  L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 505–507, 1997.
[50]  M. C. Wu, L.-Y. Lin, S.-S. Lee, and K. S. J. Pister, “Micromachined free-space integrated micro-optics,” Sensors and Actuators A, vol. 50, no. 1-2, pp. 127–134, 1995.
[51]  A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensors and Actuators A, vol. 90, no. 3, pp. 363–372, 2001.
[52]  K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, “An integrated micro-optical system for VCSEL-to-fiber active alignment,” Sensors and Actuators A, vol. 103, no. 1-2, pp. 109–115, 2003.
[53]  K. Hedsten, J. Melin, J. Bengtsson et al., “MEMS-based VCSEL beam steering using replicated polymer diffractive lens,” Sensors and Actuators A, vol. 142, no. 1, pp. 336–345, 2008.
[54]  C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 978–987, 2000.
[55]  M. Maute, F. Riemenschneider, G. B?hm et al., “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electronics Letters, vol. 40, no. 7, pp. 430–431, 2004.
[56]  B. K?gel, A. Abbaszadehbanaeiyan, P. Westbergh, et al., “Integrated tunable VCSELs with simple MEMS technology,” in Proceedings of the 22nd IEEE International Semiconductor Laser Conference (ISLC '10), pp. 26–30, 2010.
[57]  O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, and C. Paranthoen, “Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer,” Applied Physics Letters, vol. 98, no. 16, pp. 161105-1–161105-3, 2011.
[58]  B. Reig, T. Camps, D. Bourrier, E. Daran, C. Vergnenègre, and V. Bardinal, “Design of active lens for VCSEL collimation,” in Micro-Optics 2010, vol. 7716 of Proceedings of SPIE, p. 771620, 2010.
[59]  A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Applied Physics Letters, vol. 94, no. 19, Article ID 191105, 2009.
[60]  A. J. Liu, W. Chen, H. W. Qu et al., “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Physics Letters, vol. 7, no. 3, pp. 213–217, 2010.
[61]  D. F. Siriani and K. D. Choquette, “Electronically controlled two-dimensional steering of in-phase coherently coupled vertical-cavity laser arrays,” IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 167–169, 2011.
[62]  M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Applied Physics Letters, vol. 92, no. 17, Article ID 171108, 2008.
[63]  D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics, vol. 4, no. 7, pp. 466–470, 2010.
[64]  L. Chrostowski, “Optical gratings: nano-engineered lenses,” Nature Photonics, vol. 4, no. 7, pp. 413–415, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133