Optical computing is a very interesting 60-year old field of research. This paper gives a brief historical review of the life of optical computing from the early days until today. Optical computing generated a lot of enthusiasm in the sixties with major breakthroughs opening a large number of perspectives. The period between 1980 and 2000 could be called the golden age with numerous new technologies and innovating optical processors designed and constructed for real applications. Today the field of optical computing is not ready to die, it has evolved and its results benefit to new research topics such as nanooptics, biophotonics, or communication systems. 1. Introduction The knowledge of some history of sciences is useful for understanding the evolution of a research domain, its successes and failures. Optical computing is an interesting candidate for a historical review. This research field is also named optical information processing, and now the terms of information optics or information photonics are frequently used, reflecting the evolution of the domain. Optical computing is approximately 60 years old and it is a well-defined domain with its own specialized conferences, sections in the scientific journals and its own research programs and funding. It was also very active worldwide and therefore it is impossible in the frame of a paper to describe all the research results. Numerous books were written on the subject, for example, the following books describe the state of the art of optical computing at the time of their publication in 1972 [1], in 1981-82 [2, 3], in 1989 [4], and in 1998-99 [5, 6]. Since optical computing is such a well defined field over such a long period of time, it is interesting to study its evolution and this study can be helpful to understand why some research domains were very successful during only a limited period of time while other have generated numerous applications that are still in use. From the beginning there was a lot of questioning about the potential of optics for computing whereas there was no doubt about the potential and the future of electronics. Caulfield wrote in 1998 an interesting and enlightening paper on the perspectives in optical computing [7] where he discusses this competition between optics and electronics and shows that there were three phases, first “ignorance and underestimation” of electronics then “awakening and fear inferiority” and now “realistic acceptance that optical computing and electronics are eternal partners”. The purpose of this paper is to show a short history of optical
References
[1]
K. Preston, Coherent Optical Computers, McGraw-Hill, New York, NY, USA, 1972.
[2]
S. H. Lee, Optical Information Processing Fundamentals, Springer, Berlin, Germany, 1981.
[3]
H. Stark, Application of Optical Fourier Transform, Academic Press, Orlando, Fla, USA, 1982.
[4]
H. H. Arsenault, T. Szoplik, and B. Macukow, Optical Processing and Computing, Academic Pres, San Diego, Calif, USA, 1989.
[5]
J.-L. Tribillon, Traitement Optique de l'Information & Reconnaissance des Formes par Voie Optique, Teknea, Toulouse, France, 1998.
[6]
J. Shamir, Optical Systems and Processes, SPIE Press, Bellingham, Wash, USA, 1999.
[7]
H. J. Caulfield, “Perspectives in optical computing,” Computer, vol. 31, no. 2, pp. 22–25, 1998.
[8]
J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, San Francisco, Calif, USA, 1968.
[9]
A. Maréchal and P. Croce, “Un filtre de fréquences spatiales pour l'amélioration du contraste des images optiques,” Comptes Rendus de l'Académie des Sciences, vol. 237, no. 12, pp. 607–609, 1953.
[10]
L. J. Cutrona, E. N. Leith, C. J. Palermo, et al., “Optical data processing and filtering systems,” IRE Transactions on Information Theory, vol. 6, no. 3, pp. 386–400, 1960.
[11]
E. O'Neill, “Spatial filtering in optics,” IRE Transactions on Information Theory, vol. 2, no. 2, pp. 56–65, 1956.
[12]
A. Vander Lugt, “Signal detection by complex filtering,” IEEE Transactions on Information Theory, vol. 10, no. 2, pp. 139–145, 1964.
[13]
L. Bigué, Reconnaissance des formes en temps réel par voie optique: étude comparative d'implantations optiques de filtres de corrélation. Application au corrélateur optique à transformée de Fourier conjointe, Ph.D. thesis, Université de Haute Alsace, 1996.
[14]
C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Applied Optics, vol. 5, no. 7, pp. 1248–1249, 1966.
[15]
W. T. Rhodes and A. A. Sawchuk, “Incoherent optical processing,” in Optical Information Processing Fundamentals, S. H. Lee, Ed., pp. 69–110, Springer, Heidelberg, Germany, 1981.
[16]
E. Leith, “Incoherent optical processing and holography,” in Optical Processing and Computing, H. H. Arsenault, T. Szoplik, and B. Macukow, Eds., pp. 421–440, Academic Press, San Diego, Calif, USA, 1989.
[17]
J. W. Goodman, “Linear space-variant optical data processing,” in Optical Information Processing Fundamentals, S. H. Lee, Ed., pp. 235–260, Springer, Berlin, Germany, 1981.
[18]
P. Ambs, S. H. Lee, Q. Tian, et al., “Optical implementation of the Hough transform by a matrix of holograms,” Applied Optics, vol. 25, no. 22, pp. 4039–4045, 1986.
[19]
S. H. Lee, “Nonlinear optical processing,” in Optical Information Processing Fundamentals, S. H. Lee, Ed., pp. 261–303, Springer, Berlin, Germany, 1981.
[20]
L. Foucault, “Mémoire sur la construction des télescopes en verre argenté,” Annales de l'Observatoire Imperial de Paris, vol. 5, pp. 197–237, 1859.
[21]
E. Abbe, “Beitr?ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie, vol. 9, pp. 413–468, 1873.
[22]
F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Monthly Notices of the Royal Astronomical Society, vol. 94, pp. 377–384, 1934.
[23]
P.-M. Duffieux, L'Intégrale de Fourier et ses Applications à l'Optique, Faculté des Sciences Besan?on, Chez l'Auteur, France, 1946.
[24]
P.-M. Duffieux, The Fourier Transform and Its Applications to Optics, John Wiley & Sons, New York, NY, USA, 1983.
[25]
P. Elias, “Optics and communication theory,” Journal of Optical Society of America, vol. 43, no. 4, pp. 229–232, 1953.
[26]
P. Elias, D. S. Grey, and D. Z. Robinson, “Fourier treatment of optical processes,” Journal of Optical Society of America, vol. 42, no. 2, pp. 127–132, 1952.
[27]
A. W. Lohmann, “A pre-history of computer-generated holography,” Optics & Photonics News, vol. 19, no. 2, pp. 36–47, 2008.
[28]
D. Gabor, “A new microscopic principle,” Nature, vol. 161, no. 4098, pp. 777–778, 1948.
[29]
T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493–494, 1960.
[30]
T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Physical Review Letters, vol. 4, no. 11, pp. 564–566, 1960.
[31]
A. Vander Lugt, “Coherent optical processing,” Proceedings of the IEEE, vol. 62, no. 10, pp. 1300–1319, 1974.
[32]
E. N. Leith, “The evolution of information optics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1297–1304, 2000.
[33]
Y. E. Nesterkhin, G. W. Stroke, and W. E. Kock, Optical Information Processing, Plenum Press, New York, NY, USA, 1976.
[34]
E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” Journal of Optical Society of America, vol. 53, no. 12, pp. 1377–1381, 1963.
[35]
E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimentional objects,” Journal of Optical Society of America, vol. 54, no. 11, pp. 1295–1301, 1964.
[36]
B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Applied Optics, vol. 5, no. 6, pp. 967–969, 1966.
[37]
W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Applied Optics, vol. 6, no. 10, pp. 1739–1748, 1967.
[38]
L. B. Lesem, P. M. Hirsch, and J. A. Jordan Jr., “The kinoform: a new wavefront reconstruction device,” IBM Journal of Research and Development, vol. 13, no. 2, pp. 150–155, 1969.
[39]
W. H. Lee, “Computer-generated hollograms: techniques and applications,” in Progress in Optics XVI, E. Wolf, Ed., pp. 118–232, North-Holland, Amsterdam, The Netherlands, 1978.
[40]
J. D. Armitage and A. W. Lohmann, “Character recognition by incoherent spatial filtering,” Applied Optics, vol. 4, no. 4, pp. 461–467, 1965.
[41]
A. W. Lohmann, “Incoherent optical processing of complex data,” Applied Optics, vol. 16, no. 2, pp. 261–263, 1977.
[42]
D. Casasent and T. K. Luu, “Photo-DKDP light valve in optical data processing,” Applied Optics, vol. 18, no. 19, pp. 3307–3314, 1979.
[43]
F. Dumont, J. P. Hazan, and D. Rossier, “The phototitus optical converter,” Philips Technical Review, vol. 34, no. 10, pp. 274–287, 1974.
[44]
S. Iwasa, “Optical processing: near real-time coherent systems using two Itek PROM devices,” Applied Optics, vol. 15, no. 6, pp. 1418–1424, 1976.
[45]
D. S. Oliver, “Real time spatial light modulators for optical/digital processing systems,” Optical Engineering, vol. 17, no. 3, pp. 288–294, 1978.
[46]
B. J. Lechner, F. J. Marlowe, M. E. Nester, and J. Tults, “Liquid crystal matrix displays,” Proceedings of the IEEE, vol. 59, no. 11, pp. 1566–1579, 1971.
[47]
G. Labrunie, J. Robert, and J. Borel, “A electro-optical interface for real time data processing,” Revue de Physique Appliquée, vol. 10, pp. 143–146, 1975.
[48]
W. P. Bleha, L. T. Lipton, E. Wiener-Avnear, et al., “Application of the liquid crystal light valve to real-time optical data processing,” Optical Engineering, vol. 17, no. 4, pp. 371–384, 1978.
[49]
D. Casasent, “Performance evaluation of spatial light modulators,” Applied Optics, vol. 18, no. 14, pp. 2445–2453, 1979.
[50]
P. Ambs, Y. Fainman, S. H. Lee, et al., “Computerized design and generation of space-variant holographic filters. 1: system design considerations and applications of space-variant filters to image processing,” Applied Optics, vol. 27, no. 22, pp. 4753–4760, 1988.
[51]
G. R. Knight, “Interface devices and memory materials,” in Optical Information Processing Fundamentals, S. H. Lee, Ed., pp. 111–179, Springer, Berlin, Germany, 1981.
[52]
D. K. Pollock, C. J. Koester, and J. T. Tippett, Optical Processing of Information, Spartan Books, Baltimore, Md, USA, 1963.
[53]
H. M. Teager, “Parallel organized optical computers,” in Optical Processing of Information, D. K. Pollock, C. J. Koester, and J. T. Tippett, Eds., pp. 13–19, Spartan Books, Washington, DC, USA, 1963.
[54]
P. J. van Heerden, “Theory of optical information storage in solids,” Applied Optics, vol. 2, no. 4, pp. 393–400, 1963.
[55]
L. K. Anderson, “Holographic optical memory for bulk data storage,” Bell Laboratories Records, vol. 46, pp. 318–325, 1968.
[56]
L. d'Auria, J. P. Huignard, C. Slezak, and E. Spitz, “Experimental holographic read-write memory using 3-D storage,” Applied Optics, vol. 13, no. 4, pp. 808–818, 1974.
[57]
A. Vander Lugt, “Holographic memories,” in Optical Information Processing, Y. E. Nesterkhin, G. W. Stroke, and W. E. Kock, Eds., pp. 347–368, Plenum Press, New York, NY, USA, 1976.
[58]
D. Casasent, “Hybrid processors,” in Optical Information Processing Fundamentals, S. H. Lee, Ed., pp. 181–233, Springer, Berlin, Germany, 1981.
[59]
J. Jahns and S. H. Lee, Optical Computing Hardware, Academic Press, Boston, Mass, USA, 1994.
[60]
R. Hauck and O. Bryngdahl, “Computer-generated holograms with pulse-density modulation,” Journal of the Optical Society of America A, vol. 1, no. 1, pp. 5–10, 1984.
[61]
M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Applied Optics, vol. 26, no. 14, pp. 2788–2798, 1987.
[62]
F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” Journal of Optical Society of America A, vol. 5, no. 7, pp. 1058–1065, 1988.
[63]
L. Legeard, P. Réfrégier, and P. Ambs, “Multicriteria optimality for iterative encoding of computer-generated holograms,” Applied Optics, vol. 36, no. 29, pp. 7444–7449, 1997.
[64]
L. Bigué and P. Ambs, “Optimal multicriteria approach to the iterative Fourier transform algorithm,” Applied Optics, vol. 40, no. 32, pp. 5886–5893, 2001.
[65]
F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Optics Letters, vol. 21, no. 18, pp. 1513–1515, 1996.
[66]
C. Ribot, P. Lalanne, M. S. L. Lee, B. Loiseaux, and J. P. Huignard, “Analysis of blazed diffractive optical elements formed with artificial dielectrics,” Journal of the Optical Society of America A, vol. 24, no. 12, pp. 3819–3826, 2007.
[67]
U. Levy, C. H. Tsai, H. Y. O. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Optics Express, vol. 12, no. 22, pp. 5345–5355, 2004.
[68]
B. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics, John Wiley & Sons, Chichester, UK, 2009.
[69]
M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, UK, 1980.
[70]
J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications, Akademie, Berlin, Germany, 1997.
[71]
J. N. Mait, “From ink bottles to e-beams: a historical perspective of diffractive optic technology,” in Optical Processing and Computing: A Tribute to Adolf Lohmann, vol. 4392 of Proceedings of SPIE, pp. 75–86, Orlando, Fla, USA, 2001.
[72]
A. D. Fisher and J. N. Lee, “The current status of two-dimensional spatial light modulator technology,” in Optical and Hybrid Computing, vol. 634 of Proceedings of SPIE, pp. 352–371, Leesburg, Va, USA, March 1986.
[73]
U. Efron, Spatial Light Modulator Technology. Materials, Devices, and Applications, Marcel Dekker, New York, NY, USA, 1995.
[74]
“Applied optics special issue on spatial light modulators,” Applied Optics, vol. 28, no. 22, pp. 4739–4908, 1989.
[75]
“Applied optics special issue on spatial light modulators,” Applied Optics, vol. 31, no. 20, pp. 3876–4041, 1992.
[76]
“Applied optics special issue on spatial light modulators,” Applied Optics, vol. 33, no. 14, pp. 2767–2860, 1994.
[77]
“Applied optics special issue on spatial light modulators,” Applied Optics, vol. 37, no. 32, pp. 7471–7552, 1998.
[78]
T.-C. Poon, R. Juday, and T. Hara, “Spatial light modulators—research, development and applications: introduction to the feature issue,” Applied Optics, vol. 37, no. 32, p. 7471, 1998.
[79]
W. E. Ross and J. A. Davis, “The magneto-optic spatial light modulator,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, Ed., pp. 361–390, Marcel Dekker, New York, NY, USA, 1995.
[80]
W. E. Ross, K. M. Snapp, and R. H. Anderson, “Fundamental characteristics of the Litton iron garnet magneto-optic spatial light modulator,” in Advances in Optical Information Processing I, vol. 388 of Proceedings of SPIE, p. 55, Bellingham, Wash, USA, January 1983.
[81]
A. L. Lentine, “Self-electro-optic effect devices for optical information processing,” in Optical Computing Hardware, J. Jahns and S. H. Lee, Eds., pp. 45–72, Academic Press, San Diego, Calif, USA, 1994.
[82]
T.-H. Lin, A. Ersen, J. H. Wang, et al., “Two-dimensional spatial light modulators fabricated in Si/PLZT,” Applied Optics, vol. 29, no. 11, pp. 1595–1603, 1990.
[83]
T. G. McDonald and L. A. Yoder, “Digital micromirror devices make projection displays,” Laser Focus World, vol. 33, no. 8, pp. S5–S8, 1997.
[84]
D. R. Pape and L. J. Hornbeck, “Characteristics of the deformable mirror device for optical information processing,” Optical Engineering, vol. 22, no. 6, pp. 675–681, 1983.
[85]
V. Laude, S. Mazé, P. Chavel, and P. H. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Optics Communications, vol. 103, no. 1-2, pp. 33–38, 1993.
F. T. S. Yu, S. Jutamulia, T. W. Lin, et al., “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Applied Optics, vol. 26, no. 8, pp. 1370–1372, 1987.
[88]
F. Mok, J. Diep, H.-K. Liu, et al., “Real-time computer generated hologram by means of liquid-crystal television spatial light modulator,” Optics Letters, vol. 11, no. 11, pp. 748–750, 1986.
[89]
C. Soutar, J. S. E. Monroe, and J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Optical Engineering, vol. 33, no. 4, pp. 1061–1068, 1994.
[90]
N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Applied Optics, vol. 33, no. 14, pp. 2804–2811, 1994.
[91]
Holoeye, “HOLOEYE Photonics AG & HOLOEYE Corporation,” 2009, http://www.holoeye.com/.
[92]
C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Optical Engineering, vol. 33, no. 8, pp. 2704–2712, 1994.
[93]
J. A. Davis, M. J. Yzuel, J. Campos, I. Moreno, A. Márquez, and J. Nicolás, “Review of operating modes for twisted nematic liquid crystal displays for applications in optical image processing,” in Wave Optics and Photonic Devices for Optical Information Processing II, vol. 5181 of Proceedings of SPIE, pp. 120–131, San Diego, Calif, USA, 2003.
[94]
J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Applied Optics, vol. 46, no. 23, pp. 5667–5679, 2007.
[95]
A. Lizana, A. Marquez, I. Moreno, et al., “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” Journal of the European Optical Society—Rapid Publication, vol. 3, Article ID 08012, 2008.
[96]
E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” Journal of the Optical Society of America B, vol. 24, no. 12, pp. 2940–2947, 2007.
[97]
M. T. Gruneisen, W. A. Miller, R. C. Dymale, and A. M. Sweiti, “Holographic generation of complex fields with spatial light modulators: application to quantum key distribution,” Applied Optics, vol. 47, no. 4, pp. A32–A42, 2008.
[98]
A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Optics Express, vol. 16, no. 4, pp. 2597–2603, 2008.
[99]
A. V. Kuzmenko and P. V. Yezhov, “Iterative algorithms for off-axis double-phase computer-generated holograms implemented with phase-only spatial light modulators,” Applied Optics, vol. 46, no. 30, pp. 7392–7400, 2007.
[100]
G. Milewski, D. Engstr?m, and J. Bengtsson, “Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators,” Applied Optics, vol. 46, no. 1, pp. 95–105, 2007.
[101]
A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the fresnel regime,” Optics Express, vol. 12, no. 10, pp. 2243–2250, 2004.
[102]
W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” óptica Pura y Aplicada, vol. 38, no. 3, pp. 71–81, 2005.
[103]
P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, et al., “Motionless-head parallel readout optical-disk system,” Applied Optics, vol. 32, no. 2, pp. 190–203, 1993.
[104]
F. H. Mok, G. W. Burr, and D. Psaltis, “Angle and space multiplexed holographic random access memory (HRAM),” Optical Memory and Neural Networks, vol. 3, no. 2, pp. 119–127, 1994.
[105]
J. Ashley, M. P. Bernal, G. W. Burr, et al., “Holographic data storage,” IBM Journal of Research and Development, vol. 44, no. 3, pp. 341–368, 2000.
[106]
H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer, Berlin, Germany, 2000.
S. Hunter, F. Kiamilev, S. Esener , et al., “Potentials of two-photon based 3-D optical memories for high performance computing,” Applied Optics, vol. 29, no. 14, pp. 2058–2066, 1990.
[109]
B. Kohler, S. Bernet, A. Renn, et al., “Storage of 2000 holograms in a photochemical hole burning system,” Optics Letters, vol. 18, no. 24, pp. 2144–2146, 1993.
[110]
D. Casasent and W.-T. Chang, “Correlation synthetic discriminant functions,” Applied Optics, vol. 25, no. 14, pp. 2343–2350, 1986.
[111]
L. Bigué, M. Fracès, and P. Ambs, “Experimental implementation of a joint transform correlator using synthetic discriminant functions,” Optics and Lasers in Engineering, vol. 23, no. 2-3, pp. 93–111, 1995.
[112]
J. Campos, A. Márquez, M. J. Yzuel, J. A. Davis, D. M. Cottrell, and I. Moreno, “Fully complex synthetic discriminant functions written onto phase-only modulators,” Applied Optics, vol. 39, no. 32, pp. 5964–5970, 2000.
[113]
A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent, “Minimum average correlation energy filters,” Applied Optics, vol. 26, no. 17, pp. 3633–3640, 1987.
[114]
B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Applied Optics, vol. 31, no. 23, pp. 4773–4801, 1992.
[115]
B. V. K. Vijaya Kumar and L. Hassebrook, “Performance measures for correlation filters,” Applied Optics, vol. 29, no. 20, pp. 2997–3006, 1990.
[116]
P. Réfrégier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Optics Letters, vol. 16, pp. 829–831, 1991.
[117]
R. D. Juday, B. V. K. Vijaya Kumar, and P. K. Rajan, “Optimal real correlation filters,” Applied Optics, vol. 30, no. 5, pp. 520–522, 1991.
[118]
D. Lefebvre, H. H. Arsenault, and S. Roy, “Nonlinear filter for pattern recognition invariant to illumination and to out-of-plane rotations,” Applied Optics, vol. 42, no. 23, pp. 4658–4662, 2003.
[119]
B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Applied Optics, vol. 28, no. 12, pp. 2358–2367, 1989.
[120]
B. Javidi, “Synthetic discriminant function-based binary nonlinear optical correlator,” Applied Optics, vol. 28, no. 13, pp. 2490–2493, 1989.
[121]
B. Javidi, “Comparison of the nonlinear joint transform correlator and the nonlinearly transformed matched filter based correlator for noisy input scenes,” Optical Engineering, vol. 29, no. 9, pp. 1013–1020, 1990.
[122]
P. Refregier, V. Laude, and B. Javidi, “Nonlinear joint-transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Optics Letters, vol. 19, no. 6, pp. 405–407, 1994.
[123]
F. T. S. Yu and S. Yin, Selected Papers on Optical Pattern Recognition, SPIE Press, Bellingham, Wash, USA, 1999.
[124]
P. Ambs, W. E. Cleland, D. E. Kraus, P. Suni, J. A. Thompson, and J. Turek, “Kinoform filter for an incoherent optical processor,” Applied Optics, vol. 22, no. 6, pp. 796–803, 1983.
[125]
W. E. Cleland, D. E. Kraus, J. A. Thompson, and P. Ambs, “Optical trigger processor for high energy physics,” Nuclear Instruments & Methods in Physics Research, vol. 216, no. 3, pp. 405–414, 1983.
[126]
P. Hough, “Methods and means for recognizing patterns,” US patent no. 3,069,654, 1962.
[127]
S. Laut, F. Xu, P. Ambs, and Y. Fainman, “Matrix of computer-generated holograms for an optical Hough transform processor,” in Optical Information Science and Technology (OIST97): Optical Memory and Neural Networks, vol. 3402 of Proceedings of SPIE, pp. 22–31, Moscow, Russia, August 1998.
[128]
D. P. Casasent and J. Richards, “High-speed acousto-optic mapping modulator for the generalized Hough transform,” Applied Optics, vol. 32, no. 35, pp. 7217–7224, 1993.
[129]
G. Eichmann and B. Z. Dong, “Coherent optical production of the Hough transform,” Applied Optics, vol. 22, no. 6, pp. 830–834, 1983.
[130]
W. H. Steier and R. K. Shori, “Optical Hough transform,” Applied Optics, vol. 25, no. 16, pp. 2734–2738, 1986.
[131]
D. A. Gregory, J. A. Loudin, J. C. Kirsch, et al., “Using the hybrid modulating properties of liquid crystal television,” Applied Optics, vol. 30, no. 11, pp. 1374–1378, 1991.
[132]
E. C. Tam, F. T. S. Yu, D. A. Gregory, and R. D. Juday, “Autonomous real-time object tracking with an adaptive joint transform correlator,” Optical Engineering, vol. 29, no. 4, pp. 314–320, 1990.
[133]
F. T. S. Yu, T. Lu, E. C. Tam, et al., “Optical disk based joint transform correlator,” Applied Optics, vol. 30, no. 8, pp. 915–916, 1991.
[134]
A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Optical Engineering, vol. 36, no. 10, pp. 2737–2746, 1997.
[135]
H. Rajbenbach, S. Bann, P. Réfrégier, et al., “A compact photorefractive correlator for robotic applications,” Applied Optics, vol. 31, no. 26, pp. 5666–5674, 1992.
[136]
J. F. Rodolfo, H. J. Rajbenbach, and J. P. Huignard, “Performance of a photorefractive joint transform correlator identification,” Optical Engineering, vol. 34, no. 4, pp. 1166–1171, 1995.
[137]
L. Guibert, G. Keryer, A. Servel, et al., “On-board optical joint transform correlator for real-time road sign recognition,” Optical Engineering, vol. 34, no. 1, pp. 135–143, 1995.
[138]
J. A. Sloan and D. W. Small, “Design and fabrication of a miniaturized optical correlator,” Optical Engineering, vol. 32, no. 12, pp. 3307–3315, 1993.
[139]
S. Bains, “Miniature optical correlator fits inside a PC,” Laser Focus World, vol. 31, no. 12, pp. 17–18, 1995.
[140]
T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” in Optical Pattern Recognition XV, vol. 5437 of Proceedings of SPIE, pp. 123–133, Orlando, Fla, USA, April 2004.
[141]
T.-H. Chao and T. Lu, “Automatic target recognition (ATR) performance improvement using integrated grayscale optical correlator and neural network,” in Optical Pattern Recognition XX, vol. 7340 of Proceedings of SPIE, Orlando, Fla, USA, 2009.
[142]
P. Birch, R. Young, F. Claret-Tournier, et al., “Fully complex filter implementation in all-optical and hybrid digital/optical correlators,” in Optical Pattern Recognition XII, vol. 4387 of Proceedings of SPIE, pp. 16–26, Orlando, Fla, USA, April 2001.
[143]
INO, “INO Optical correlator OC-VGA-6000,” 2001.
[144]
P. Parrein, Corrélation d'images de profondeur. Application à l'inspection automatique d'objets, Ph.D. thesis, Université Paris Sud, Orsay, France, 2001.
[145]
H. Rajbenbach, Y. Fainman, and S. H. Lee, “Optical implementation of an iterative algorithm for matrix inversion,” Applied Optics, vol. 26, no. 6, pp. 1024–1031, 1987.
[146]
H. J. Caulfield, W. T. Rhodes, M. J. Foster, et al., “Optical implementation of systolic array processing,” Optics Communications, vol. 40, no. 2, pp. 86–90, 1981.
[147]
D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Applied Optics, vol. 27, no. 9, pp. 1752–1759, 1988.
[148]
R. A. Athale, Digital Optical Computing, SPIE Press, Bellingham, Wash, USA, 1990.
[149]
H. J. Caulfield and G. O. Gheen, Selected Papers on Optical Computing, SPIE Press, Bellingham, Wash, USA, 1989.
[150]
B. S. Wherrett and P. Chavel, Optical Computing, Institute of Physics, Bristol, UK, 1995.
[151]
F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, et al., “Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices,” Applied Optics, vol. 31, no. 26, pp. 5431–5446, 1992.
[152]
P. S. Guilfoyle and R. V. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, vol. 1563 of Proceedings of SPIE, pp. 214–222, 1991.
[153]
J. W. Goodman, “Optics as an interconnect technology,” in Optical Processing and Computing, H. H. Arsenault, T. Szoplik, and B. Macukow, Eds., pp. 1–32, Academic Press, San Diego, Calif, USA, 1989.
[154]
D. Miller, “Optical interconnects to silicon,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1312–1317, 2000.
[155]
A. W. Lohmann, W. Stork, and G. Stucke, “Optical perfect shuffle,” Applied Optics, vol. 25, no. 10, pp. 1530–1531, 1986.
[156]
A. Louri and H. Sung, “Efficient implementation methodology for three-dimensional space-invariant hypercube-based optical interconnection networks,” Applied Optics, vol. 32, no. 35, pp. 7200–7209, 1993.
[157]
T. J. Cloonan and A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Applied Optics, vol. 30, no. 26, pp. 3721–3733, 1991.
[158]
K. H. Brenner and T. M. Merklein, “Implementation of an optical crossbar network based on directional switches,” Applied Optics, vol. 31, no. 14, pp. 2446–2451, 1992.
[159]
H. Ichikawa, T. H. Barnes, M. R. Taghizadeh, et al., “Dynamic space-variant optical interconnections using liquid crystal spatial light modulators,” Optics Communications, vol. 93, no. 3-4, pp. 145–150, 1992.
[160]
K. S. Urquhart, P. Marchand, Y. Fainman, and S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Applied Optics, vol. 33, no. 17, pp. 3670–3682, 1994.
[161]
J. Shamir, H. J. Caulfield, and R. B. Johnson, “Massive holographic interconnection networks and their limitations,” Applied Optics, vol. 28, no. 2, pp. 311–324, 1989.
[162]
R. K. Kostuk, J. H. U. N. Yeh, and M. Fink, “Distributed optical data bus for board-level interconnects,” Applied Optics, vol. 32, no. 26, pp. 5010–5021, 1993.
[163]
I. Young, E. Mohammed, J. Liao, et al., “Optical I/O technology for tera-scale computing,” in Proceedings of IEEE International Solid-State Circuits Conference (ISSCC '09), pp. 468–469, San Francisco, Calif, USA, February 2009.
[164]
D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.
[165]
H. J. Caulfield, S. Dolev, and W. M. J. Green, “Optical high-performance computing: introduction to the JOSA A and applied optics feature,” Applied Optics, vol. 48, no. 22, pp. OHPC1–OHPC3, 2009.
[166]
Y. Fainman, K. Tetz, R. Rokitski, and L. I. N. Pang, “Surface plasmonic fields in nanophotonics,” Optics & Photonics News, vol. 17, no. 7-8, pp. 24–29, 2006.
[167]
Y. Fainman, “Ultrafast and nanoscale optics,” in Proceedings of Conference on Lasers and Electro-Optics, and Conference on Quantum Electronics and Laser Science (CLEO/QELS '09), pp. 1–2, Baltimore, Md, USA, June 2009.
[168]
D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Optics Letters, vol. 31, no. 1, pp. 59–61, 2006.
[169]
A. Groisman, S. Zamek, K. Campbell, L. I. N. Pang, U. Levy, and Y. Fainman, “Optofluidic switch,” Optics Express, vol. 16, no. 18, pp. 13499–13508, 2008.
[170]
P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Optics Express, vol. 17, no. 8, pp. 6578–6583, 2009.
[171]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,” Optics Express, vol. 12, no. 7, pp. 1417–1425, 2004.
[172]
U. Schnars and W. Jueptner, Digital Holography, Springer, Berlin, Germany, 2005.
[173]
U. Schnars and W. Jueptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Applied Optics, vol. 33, no. 2, pp. 179–181, 1994.
[174]
U. Schnars and W. Jueptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Applied Optics, vol. 33, no. 20, pp. 4373–4377, 1994.
[175]
J. Kühn, F. Montfort, T. Colomb, et al., “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Optics Letters, vol. 34, no. 5, pp. 653–655, 2009.
[176]
A. Jaulin and L. Bigué, “High speed partial Stokes imaging using a ferroelectric liquid crystal modulator,” Journal of the European Optical Society—Rapid Publication, vol. 3, Article ID 08019, 2008.
[177]
B. J. DeBoo, J. M. Sasian, and R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Applied Optics, vol. 44, no. 26, pp. 5434–5445, 2005.
[178]
P. Réfrégier, F. Goudail, and N. Roux, “Estimation of the degree of polarization in active coherent imagery by using the natural representation,” Journal of the Optical Society of America A, vol. 21, no. 12, pp. 2292–2300, 2004.
[179]
M. Alouini, F. Goudail, A. Grisard, et al., “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Applied Optics, vol. 48, no. 8, pp. 1610–1618, 2009.
[180]
B. Javidi, Optical and Digital Techniques for Information Security, Springer, New York, NY, USA, 2005.