全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cavity Solitons in VCSEL Devices

DOI: 10.1155/2011/628761

Full-Text   Cite this paper   Add to My Lib

Abstract:

We review advances on the experimental study of cavity solitons in VCSELs in the past decade. We emphasize on the design and fabrication of electrically or optically pumped broad-area VCSELs used for CSs formation and review different experimental configurations. Potential applications of CSs in the field of photonics are discussed, in particular the use of CSs for all-optical processing of information and for VCSELs characterization. Prospects on self-localization studies based on vertical cavity devices involving new physical mechanisms are also given. 1. Introduction In this paper we address experimental results on Cavity Solitons (CS) in VCSEL devices and focus on recent studies and developments. We emphasize on the design and fabrication of electrically or optically pumped broad-area VCSELs used for CS formation and review different experimental configurations. Applications of CS in the field of photonics are discussed, in particular the potential use of CS for all-optical processing of information and for VCSEL characterization. Prospects on self-localization studies based on vertical cavity devices involving new physical mechanisms are also given. The reader interested in the theory of CS formation in semiconductor devices can refer to recent reviews on the subject [1, 2] and also to [3] which provides a general review on CSs and their applications to photonics from a more fundamental viewpoint. A collection of articles on the most recent developments in the field can also be found in [4]. Our goal is to provide a complete and accessible review on past and most recent experimental results on CSs using vertical cavity semiconductor devices, while giving a prospect on future directions. During the 80s, the main focus of experimental studies on nonlinear dynamics was on temporal dynamics (see, e.g., [5, 6]). Observation of period doubling, quasiperiodicity, intermittency, and chaos in a variety of systems ranging from fluids to chemical reactions appeared in the literature (see, e.g., [7–9]). Optics was not an exception. After the report of period doubling and chaos in a modulated laser [10], several papers showed theoretically and experimentally the appearance of instabilities in optical systems [11]. In particular, laser with injected signal and optical amplifiers have been exhaustively studied [12–17]. Dynamics of semiconductor lasers under injection and delayed optical feedback were also objects of interests mainly because of the possible applications of such devices in optical communication systems [18–20]. Later, mainly during the 90s, the

References

[1]  L. Lugiato, F. Prati, G. Tissoni, et al., “Cavity solitons in semiconductor devices,” in Dissipative Solitons: From Optics to Biology and Medicine, vol. 751 of Lecture Notesin Physics, pp. 1–42, Springer, Berlin Heidelberg, Germany, 2008.
[2]  G. Tissoni, K. M. Aghdami, F. Prati, M. Brambilla, and L. A. Lugiato, “Cavity soliton laser based on a VCSEL with saturable absorber,” in Localized States in Physics: Solitons and Patterns, O. Descalzi, M. Clerc, S. Residori, and G. Assanto, Eds., pp. 187–211, Springer, Berlin Heidelberg, Germany, 2011.
[3]  T. Ackemann, W. J. Firth, and G. L. Oppo, “Fundamentalsand applications of spatial dissipative solitons in photonic devices,” in Advances in Atomic Molecular and Optical Physics, P. R. B. E. Arimondo and C. C. Lin, Eds., vol. 57 of AdvancesIn Atomic, Molecular, and Optical Physics, chapter 6, pp. 323–421, Academic Press, 2009.
[4]  R. Kuszelewicza, S. Barbay, G. Tissoni, and G. Almuneau, “Editorial on dissipative optical solitons,” European Physical Journal D, vol. 59, no. 1, pp. 1–2, 2010.
[5]  H. G. Solari, M. Natiello, and G. Mindlin, Nonlinear Dynamics: A Two-Way Trip from Physics to Math, IOP Publishers, London, UK, 1996.
[6]  R. Gilmore and M. Lefranc, The Topology of Chaos, Alice in Stretch and Squeeze land, Wiley, New York, NY, USA, 2002.
[7]  F. Moss, L. A. Lugiato, and W. Schleigh, Eds., Noise and Chaos in Nonlinear Dynamical Systems, Cambridge University Press, New York, NY, USA, 1990.
[8]  B. Belousov, “A periodic reaction and its mechanism,” in Oscillationsand Traveling Waves in Chemical Systems, R. Field and M. Burger, Eds., pp. 605–613, Wiley, New York, NY, USA, 1985.
[9]  J. C. Roux, R. H. Simoyi, and H. L. Swinney, “Observation of a strange attractor,” Physica D, vol. 8, no. 1-2, pp. 257–266, 1983.
[10]  F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, “Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser,” Physical Review Letters, vol. 49, no. 17, pp. 1217–1220, 1982.
[11]  N. B. Abraham, P. Mandel, and L. M. Narducci, “I dynamical instabilities and pulsations in lasers,” Progress in Optics, vol. 25, pp. 1–190, 1988.
[12]  F. T. Arecchi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce, “Deterministic chaos in laser with injected signal,” Optics Communications, vol. 51, no. 5, pp. 308–314, 1984.
[13]  J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, “Instabilities in lasers with an injected signal,” Journal of the Optical Society of America B, vol. 2, no. 1, pp. 173–183, 1985.
[14]  L. A. Lugiato, L. M. Narducci, D. K. Bandy, and C. A. Pennise, “Breathing, spiking and chaos in a laser with injected signal,” Optics Communications, vol. 46, no. 1, pp. 64–68, 1983.
[15]  L. M. Narducci, J. R. Tredicce, L. A. Lugiato, N. B. Abraham, and D. K. Bandy, “Multimode laser with an injected signal: steady-state and linear stability analysis,” Physical Review A, vol. 32, no. 3, pp. 1588–1595, 1985.
[16]  H. G. Solari and G. L. Oppo, “Laser with injected signal: perturbation of an invariant circle,” Optics Communications, vol. 111, no. 1-2, pp. 173–190, 1994.
[17]  F. A. N. B. Abraham and l. Lugiato, Eds., Instabilities and Chaos in Quantum Optics, vol. 2, Plenum Press, New York, 1988.
[18]  S. Wieczorek, B. Krauskopf, and D. Lenstra, “Unifying view of bifurcations in a semiconductor laser subject to optical injection,” Optics Communications, vol. 172, no. 1, pp. 279–295, 1999.
[19]  G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Physical Review Letters, vol. 81, no. 25, pp. 5536–5539, 1998.
[20]  B. Krauskopf and D. Lenstra, Eds., Fundamental Issues of Nonlinear Laser Dynamics, AIP, New York, NY, USA, 2000.
[21]  P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Optics Communications, vol. 73, no. 5, pp. 403–408, 1989.
[22]  J. R. Tredicce, E. J. Quel, A. M. Ghazzawi et al., “Spatial and temporal instabilities in a CO2 laser,” Physical Review Letters, vol. 62, no. 11, pp. 1274–1277, 1989.
[23]  P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” Journal of Optics B, vol. 2, no. 3, pp. 399–405, 2000.
[24]  R. Holzner, P. Eschle, A. W. McCord, and D. M. Warrington, “Transverse “bouncing” of polarized laser beams in sodium vapor,” Physical Review Letters, vol. 69, no. 15, pp. 2192–2195, 1992.
[25]  M. Brambilla, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, “Transverse laser patterns. II. Variational principle for pattern selection, spatial multistability, and laser hydrodynamics,” Physical Review A, vol. 43, no. 9, pp. 5114–5120, 1991.
[26]  C. Green, G. B. Mindlin, E. J. D'Angelo, H. G. Solari, and J. R. Tredicce, “Spontaneous symmetry breaking in a laser: the experimental side,” Physical Review Letters, vol. 65, no. 25, pp. 3124–3127, 1990.
[27]  R. L. Ruiz, G. B. Mindlin, C. Pérez García, and J. Tredicce, “Mode-mode interaction for a CO2 laser with imperfect O(2) symmetry,” Physical Review A, vol. 47, no. 1, pp. 500–509, 1993.
[28]  A. B. Coates, C. O. Weiss, C. Green et al., “Dynamical transverse laser patterns. II. Experiments,” Physical Review A, vol. 49, no. 2, pp. 1452–1466, 1994.
[29]  G. Huyet, M. C. Martinoni, J. R. Tredicce, and S. Rica, “Spatiotemporal dynamics of lasers with a large fresnel number,” Physical Review Letters, vol. 75, no. 22, pp. 4027–4030, 1995.
[30]  M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Physical Review Letters, vol. 79, no. 11, pp. 2042–2045, 1997.
[31]  D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Physical Review A, vol. 56, no. 5, pp. R3366–R3369, 1997.
[32]  G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. M. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” Journal of the Optical Society of America B, vol. 16, no. 11, pp. 2083–2094, 1999.
[33]  R. Kuszelewicz, I. Ganne, I. Sagnes, G. Slekys, and M. Brambilla, “Optical self-organization in bulk and multiquantum well GaAIAs microresonators,” Physical Review Letters, vol. 84, no. 26, pp. 6006–6009, 2000.
[34]  V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Physical Review A, vol. 61, no. 6, pp. 063818–063811, 2000.
[35]  T. Ackemann, S. Barland, M. Cara et al., “Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers,” Journal of Optics B, vol. 2, no. 3, pp. 406–412, 2000.
[36]  T. Ackemann, S. Barland, J. R. Tredicce et al., “Spatial structure of broad-area vertical-cavity regenerative amplifiers,” Optics Letters, vol. 25, no. 11, pp. 814–816, 2000.
[37]  N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Optics and Spectroscopy, vol. 65, pp. 449–450, 1988.
[38]  G. S. McDonald and W. J. Firth, “Spatial solitary-wave optical memory,” Journal of the Optical Society of America B, vol. 7, pp. 1328–1335, 1990.
[39]  M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Physical Review Letters, vol. 73, no. 5, pp. 640–643, 1994.
[40]  W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Physical Review Letters, vol. 76, no. 10, pp. 1623–1626, 1996.
[41]  L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” European Physical Journal D, vol. 15, no. 2, pp. 257–266, 2001.
[42]  G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1419–1427, 2000.
[43]  P. Coullet, C. Riera, and C. Tresser, “Stable static localized structures in one dimension,” Physical Review Letters, vol. 84, no. 14, pp. 3069–3072, 2000.
[44]  W. J. Firth, L. Columbo, and A. J. Scroggie, “Proposed resolution of theory-experiment discrepancy in homoclinic snaking,” Physical Review Letters, vol. 99, no. 10, Article ID 104503, 2007.
[45]  S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Physical Review Letters, vol. 101, no. 25, Article ID 253902, 2008.
[46]  B. Sch?pers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Physical Review Letters, vol. 85, no. 4, pp. 748–751, 2000.
[47]  N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” Journal of the Optical Society of America B, vol. 7, pp. 1057–1065, 1990.
[48]  M. Saffman, D. Montgomery, and D. Z. Anderson, “Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator,” Optics Letters, vol. 19, no. 8, pp. 518–520, 1994.
[49]  R. Neubecker, G. L. Oppo, B. Thuering, and T. Tschudi, “Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects,” Physical Review A, vol. 52, no. 1, pp. 791–808, 1995.
[50]  S. Barland, J. R. Tredicce, M. Brambilla et al., “Cavity solitons work as pixels in semiconductors,” Nature, vol. 419, no. 6908, pp. 699–702, 2002.
[51]  M. Grabherr, R. J?ger, M. Miller et al., “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photonics Technology Letters, vol. 10, no. 8, pp. 1061–1063, 1998.
[52]  M. Grabherr, M. Miller, R. J?ger et al., “High-power VCSEL's: single devices and densely packed 2-D-arrays,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 5, no. 3, pp. 495–502, 1999.
[53]  M. Miller, M. Grabherr, R. King, R. J?ger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 7, no. 2, pp. 210–216, 2001.
[54]  Y. Tanguy, T. Ackemann, W. J. Firth, and R. J?ger, “Realization of a semiconductor-based cavity soliton laser,” Physical Review Letters, vol. 100, no. 1, Article ID 013907, 2008.
[55]  P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Physical Review Letters, vol. 101, no. 12, Article ID 123905, 2008.
[56]  S. Fedorov, D. Michaelis, U. Peschel et al., “Effects of spatial inhomogeneities on the dynamics of cavity solitons in quadratically nonlinear media,” Physical Review E, vol. 64, no. 3, Article ID 036610, pp. 366101–366108, 2001.
[57]  A. J. Scroggie, J. Jeffers, G. McCartney, and G. L. Oppo, “Reversible soliton motion,” Physical Review E, vol. 71, no. 4, Article ID 046602, pp. 046602/1–046602/5, 2005.
[58]  X. Hachair, S. Barland, L. Furfaro et al., “Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold,” Physical Review A, vol. 69, no. 4, article 043817, 2004.
[59]  X. Hachair, F. Pedaci, E. Caboche et al., “Cavity solitons in a driven VCSEL above threshold,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 12, no. 3, pp. 339–351, 2006.
[60]  R. Michalzik, M. Grabherr, and K. J. Ebeling, “High-power vcsels: modelingand experimental characterization,” in Proceedings of the SPIE 3286 (SPIE '98), K. D. Choquette and R. A. Morgan, Eds., vol. 3286, pp. 206–219, 1998.
[61]  T. Camps, V. Bardinal, E. Havard et al., “Management of the electrical injection uniformity in broad-area top-emitting VCSELs,” European Physical Journal D, vol. 59, no. 1, pp. 53–57, 2010.
[62]  M. Dabbicco, T. Maggipinto, and M. Brambilla, “Optical bistability and stationary patterns in photonic-crystal vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 86, no. 2, Article ID 021116, 2005.
[63]  F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. Tredicce, “Mapping local defects of extended media using localized structures,” Applied Physics Letters, vol. 93, no. 11, Article ID 111104, 2008.
[64]  E. Caboche, F. Pedaci, P. Genevet et al., “Microresonator defects as sources of drifting cavity solitons,” Physical Review Letters, vol. 102, no. 16, Article ID 163901, 2009.
[65]  U. Keller, “Recent developments in compact ultrafast lasers,” Nature, vol. 424, no. 6950, pp. 831–838, 2003.
[66]  U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Physics Reports, vol. 429, no. 2, pp. 67–120, 2006.
[67]  S. Barbay, Y. Ménesguen, I. Sagnes, and R. Kuszelewicz, “Cavity optimization of optically pumped broad-area microcavity lasers,” Applied Physics Letters, vol. 86, no. 15, Article ID 151119, pp. 1–3, 2005.
[68]  S. Barbay, Y. Ménesguen, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, “Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier,” Optics Letters, vol. 31, no. 10, pp. 1504–1506, 2006.
[69]  D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface-emitting lasers,” Electronics Letters, vol. 31, no. 1, pp. 43–44, 1995.
[70]  S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electronics Letters, vol. 33, no. 20, pp. 1708–1710, 1997.
[71]  K. D. Choquette, H. Q. Hou, K. L. Lear et al., “Self-pulsing oxide-confined vertical-cavity lasers with ultralow operating current,” Electronics Letters, vol. 32, no. 5, pp. 459–460, 1996.
[72]  A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, “Q-switched operation of a coupled-resonator vertical-cavity laser diode,” Applied Physics Letters, vol. 76, no. 15, pp. 1975–1977, 2000.
[73]  T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber,” European Physical Journal D, vol. 59, no. 1, pp. 91–96, 2010.
[74]  U. Bortolozzo, S. Residori, and P. L. Ramazza, “Optical structures and their control in a liquid-crystal-light-valve experiment,” Molecular Crystals and Liquid Crystals, vol. 450, no. 1, pp. 141–162, 2006.
[75]  T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Applied Physics B, vol. 98, no. 2-3, pp. 327–331, 2010.
[76]  X. Hachair, L. Furfaro, J. Javaloyes et al., “Cavity-solitons switching in semiconductor microcavities,” Physical Review A, vol. 72, no. 1, Article ID 013815, 2005.
[77]  S. Barbay and R. Kuszelewicz, “Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers,” Optics Express, vol. 15, no. 19, pp. 12457–12463, 2007.
[78]  L. Columbo, L. Gil, and J. Tredicce, “Could cavity solitons exist in bidirectional ring lasers?” Optics Letters, vol. 33, no. 9, pp. 995–997, 2008.
[79]  R. Vilaseca, M. C. Torrent, J. García-Ojalvo, M. Brambilla, and M. S. Miguel, “Two-photon cavity solitons in active optical media,” Physical Review Letters, vol. 87, no. 8, Article ID 083902, pp. 839021–839024, 2001.
[80]  V. Ahufinger, J. García-Ojalvo, J. Mompart, M. C. Torrent, R. Corbalán, and R. Vilaseca, “Cavity solitons in two-level lasers with dense amplifying medium,” Physical Review Letters, vol. 91, no. 8, pp. 839011–839014, 2003.
[81]  Y. Tanguy, N. Radwell, T. Ackemann, and R. J?ger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Physical Review A, vol. 78, no. 2, Article ID 023810, 2008.
[82]  P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Physical Review E, vol. 78, no. 1, Article ID 016212, 2008.
[83]  N. Radwell, C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” European Physical Journal D, vol. 59, no. 1, pp. 121–131, 2010.
[84]  N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE Journal of Quantum Electronics, vol. 45, no. 11, pp. 1388–1395, 2009.
[85]  P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Physical Review A, vol. 79, no. 3, Article ID 033819, 2009.
[86]  P. Genevet, L. Columbo, S. Barland, M. Giudici, L. Gil, and J. R. Tredicce, “Multistable monochromatic laser solitons,” Physical Review A, vol. 81, no. 5, Article ID 053839, 2010.
[87]  L. Columbo, L. Gila, and P. Genevet, “Theoretical description of the transverse localised structures in a face to face VCSEL configuration,” European Physical Journal D, vol. 59, no. 1, pp. 97–107, 2010.
[88]  P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Bistable and addressable localized vortices in semiconductor lasers,” Physical Review Letters, vol. 104, no. 22, Article ID 223902, 2010.
[89]  N. N. Rozanov, S. V. Fedorov, and A. N. Shatsev, “Nonstationary multivortex and fissionable soliton-like structures of laser radiation,” Optics and Spectroscopy, vol. 95, no. 6, pp. 843–848, 2003.
[90]  S. V. Fedorov and N. N. Rosanov, “Diffraction switching waves and autosolitonsin a laser with saturable absorption,” Optics and Spectroscopy, vol. 72, no. 6, pp. 782–785, 1992.
[91]  A. G. Vladimirov, S. V. Fedorov, N. A. Kaliteevskii, G. V. Khodova, and N. N. Rosanov, “Numerical investigation of laser localized structures,” Journal of Optics B, vol. 1, no. 6, pp. 101–106, 1999.
[92]  M. Bache, F. Prati, G. Tissoni et al., “Cavity soliton laser based on VCSEL with saturable absorber,” Applied Physics B, vol. 81, no. 7, pp. 913–920, 2005.
[93]  S. V. Fedorov, N. N. Rozanov, and A. N. Shatsev, “Two-dimensional solitons in B-class lasers with saturable absorption,” Optics and Spectroscopy, vol. 102, no. 3, pp. 449–455, 2007.
[94]  F. Prati, P. Caccia, G. Tissoni, L. A. Lugiato, K. M. Aghdami, and H. Tajalli, “Effects of carrier radiative recombination on a VCSEL-based cavity soliton laser,” Applied Physics B, vol. 88, no. 3, pp. 405–410, 2007.
[95]  K. M. Aghdami, F. Prati, P. Caccia et al., “Comparison of different switching techniques in a cavity soliton laser,” European Physical Journal D, vol. 47, no. 3, pp. 447–455, 2008.
[96]  N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Two-dimensional laser soliton complexes with weak, strong, and mixed coupling,” Applied Physics B, vol. 81, no. 7, pp. 937–943, 2005.
[97]  N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Curvilinear motion of multivortex laser-soliton complexes with strong and weak coupling,” Physical Review Letters, vol. 95, no. 5, Article ID 053903, pp. 1–4, 2005.
[98]  P. Genevet, M. Turconi, S. Barland, M. Giudici, and J. R. Tredicce, “Mutual coherence of laser solitons in coupled semiconductor resonators,” European Physical Journal D, vol. 59, no. 1, pp. 109–114, 2010.
[99]  S. V. Fedorov, A. G. Vladimirov, G. V. Khodova, and N. N. Rosanov, “Effect of frequency detunings and finite relaxation rates on laser localized structures,” Physical Review E, vol. 61, no. 5, pp. 5814–5824, 2000.
[100]  F. Prati, G. Tissoni, L. A. Lugiato, K. M. Aghdami, and M. Brambilla, “Spontaneously moving solitons in a cavity soliton laser with circular section,” European Physical Journal D, vol. 59, no. 1, pp. 73–79, 2010.
[101]  N. Radwell, P. Rose, C. Cleff, C. Denz, and T. Ackemann, “Compensation of spatial inhomogeneities in a cavity soliton laser using a spatial light modulator,” Optics Express, vol. 18, no. 22, pp. 23121–23132, 2010.
[102]  N. N. Rosanov, “Switching waves, autosolitons, and parallel digital-analogous optical computing,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, Ed., vol. 1840, pp. 130–143, 1992.
[103]  F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Applied Physics Letters, vol. 89, no. 22, Article ID 221111, 2006.
[104]  L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature, vol. 397, no. 6720, pp. 594–598, 1999.
[105]  Y. Okawachi, M. S. Bigelow, J. E. Sharping et al., “Tunable all-optical delays via brillouin slow light in an optical fiber,” Physical Review Letters, vol. 94, no. 15, article 153902, 2005.
[106]  J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Optics Express, vol. 13, no. 16, pp. 6092–6098, 2005.
[107]  M. van der Poel, J. M?rk, and J. M. Hvam, “Controllable delay of ultrashort pulses in a quantum dot optical amplifier,” Optics Express, vol. 13, no. 20, pp. 8032–8037, 2005.
[108]  J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Physics, vol. 2, no. 11, pp. 775–780, 2006.
[109]  B. Sch?pers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Proceedings of the 2nd Nonlinear Optical Beam and Pulse Propagation (SPIE '01), vol. 4271, pp. 130–137, 2001.
[110]  F. Pedaci, S. Barland, E. Caboche et al., “All-optical delay line using semiconductor cavity solitons,” Applied Physics Letters, vol. 92, no. 1, article 011101, 2008.
[111]  G. Kozyreff, P. Assemat, and S. J. Chapman, “Influence of boundaries on localized patterns,” Physical Review Letters, vol. 103, no. 16, article 164501, 2009.
[112]  E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Physical Review A, vol. 80, no. 5, Article ID 053814, 2009.
[113]  S. Barbay, J. Koehler, R. Kuszelewicz, T. Maggipinto, I. M. Perrini, and M. Brambilla, “Optical patterns and cavity solitons in quantum-dot microresonators,” IEEE Journal of Quantum Electronics, vol. 39, no. 2, pp. 245–254, 2003.
[114]  I. M. Perrini, S. Barbay, T. Maggipinto, M. Brambilla, and R. Kuszelewicz, “Model for optical pattern and cavity soliton formation in a microresonator with self-assembled semiconductor quantum dots,” Applied Physics B, vol. 81, no. 7, pp. 905–912, 2005.
[115]  M. Brambilla, T. Maggipinto, I. M. Perrini, S. Barbay, and R. Kuszelewicz, “Modeling pattern formation and cavity solitons in quantum dot optical microresonators in absorbing and amplifying regimes,” Chaos, vol. 17, no. 3, article 037119, 2007.
[116]  K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Applied Physics Letters, vol. 64, no. 16, pp. 2062–2064, 1994.
[117]  C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N. G. Stoffel, “Polarisation characteristics of quantum well vertical cavity surface emitting lasers,” Electronics Letters, vol. 27, no. 2, pp. 163–165, 1991.
[118]  C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE Journal of Quantum Electronics, vol. 27, no. 6, pp. 1402–1409, 1991.
[119]  M. S. Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Physical Review A, vol. 52, no. 2, pp. 1728–1739, 1995.
[120]  S. Barbay, G. Giacomelli, and F. Marin, “Noise-assisted transmission of binary information: theory and experiment,” Physical Review E, vol. 63, no. 5, pp. 511101–511109, 2001.
[121]  S. Barbay, G. Giacomelli, and F. Marin, “Experimental evidence of binary aperiodic stochastic resonance,” Physical Review Letters, vol. 85, no. 22, pp. 4652–4655, 2000.
[122]  S. P. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, “Pattern formation in the transverse section of a laser with a large fresnel number,” Physical Review Letters, vol. 82, no. 7, pp. 1434–1437, 1999.
[123]  I. V. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Physical Review Letters, vol. 100, no. 21, article 213901, 2008.
[124]  Z. G. Pan, S. Jiang, M. Dagenais et al., “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 63, no. 22, pp. 2999–3001, 1993.
[125]  P. Besnard, M. L. Charès, G. Stéphan, and F. Robert, “Switching between polarized modes of a verticalcavity surface-emitting laser by isotropic optical feedback,” Journal of the Optical Society of America B, vol. 16, no. 7, pp. 1059–1063, 1999.
[126]  M. Giudici, S. Balle, T. Ackemann, S. Barland, and J. R. Tredicce, “Polarization dynamics in vertical-cavity surface-emitting lasers with optical feedback: experiment and model,” Journal of the Optical Society of America B, vol. 16, no. 11, pp. 2114–2123, 1999.
[127]  B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” Journal of Applied Physics, vol. 96, no. 11, pp. 6002–6007, 2004.
[128]  I. Gatare, M. Sciamanna, M. Nizette, and K. Panajotov, “Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection,” Physical Review A, vol. 76, no. 3, article 031803, 2007.
[129]  H. Kawaguchi, “Polarization-bistable vertical-cavity surface-emitting lasers: application for optical bit memory,” Opto-Electronics Review, vol. 17, no. 4, pp. 265–274, 2009.
[130]  V. J. Sánchez-Morcillo, I. Pérez-Arjona, F. Silva, G. J. de Valcárcel, and E. Roldán, “Vectorial Kerr-cavity solitons,” Optics Letters, vol. 25, no. 13, pp. 957–959, 2000.
[131]  X. Hachair, G. Tissoni, H. Thienpont, and K. Panajotov, “Linearly polarized bistable localized structure in medium-size vertical-cavity surface-emitting lasers,” Physical Review A, vol. 79, no. 1, article 011801, 2009.
[132]  F. W. Wise, “Generation of light bullets,” Physicss, vol. 3, p. 107, 2010.
[133]  S. Minardi, F. Eilenberger, Y. V. Kartashov et al., “Three-dimensional light bullets in arrays of waveguides,” Physical Review Letters, vol. 105, no. 26, article 263901, 2010.
[134]  H. C. Gurgov and O. Cohen, “Spatiotemporal pulse-train solitons,” Optics Express, vol. 17, no. 9, pp. 7052–7058, 2009.
[135]  B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” Journal of Optics B, vol. 7, no. 5, pp. R53–R72, 2005.
[136]  F. Wise and P. Di Trapani, “Spatiotemporal solitons,” Optics and Photonics News, vol. 13, no. 2, pp. 28–32, 2002.
[137]  Y. Silberberg, “Collapse of optical pulse,” Optics Letters, vol. 15, pp. 1282–1284, 1990.
[138]  M. O. Williams, C. W. McGrath, and J. N. Kutz, “Light-bullet routing and control with planar waveguide arrays,” Optics Express, vol. 18, no. 11, pp. 11671–11682, 2010.
[139]  N. N. Rozanov, “On solitonlike optical structures on nonlinear optical media with gain,” Optics and Spectroscopy, vol. 76, no. 4, pp. 555–557, 1994.
[140]  N. A. Veretenov, N. N. Rosanov, and S. V. Fedorov, “Motion of complexes of 3D-laser solitons,” Optical and Quantum Electronics, vol. 40, no. 2–4, pp. 253–262, 2008.
[141]  M. Brambilla, T. Maggipinto, G. Patera, and L. Columbo, “Cavity light bullets: three-dimensional localized structures in a nonlinear optical resonator,” Physical Review Letters, vol. 93, no. 20, article 203901, 2004.
[142]  M. Brambilla, L. Columbo, and T. Maggipinto, “Three-dimensional self-organized patterns in the field profile of a ring cavity resonator,” Journal of Optics B, vol. 6, no. 5, pp. S197–S204, 2004.
[143]  S. D. Jenkins, F. Prati, L. A. Lugiato, L. Columbo, and M. Brambilla, “Cavity light bullets in a dispersive Kerr medium,” Physical Review A, vol. 80, no. 3, Article ID 033832, 2009.
[144]  L. Columbo, I. M. Perrini, T. Maggipinto, and M. Brambilla, “3D self-organized patterns in the field profile of a semiconductor resonator,” New Journal of Physics, vol. 8, p. 312, 2006.
[145]  L. Columbo, F. Prati, M. Brambilla, and T. Maggipinto, “Self-pulsing localized structures in a laser with saturable absorber,” European Physical Journal D, vol. 59, no. 1, pp. 115–120, 2010.
[146]  F. Lederer and W. Biehlig, “Bright solitons and light bullets in semiconductor waveguides,” Electronics Letters, vol. 30, no. 22, pp. 1871–1872, 1994.
[147]  A. A. Sukhorukov and Y. S. Kivshar, “Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides,” Physical Review Letters, vol. 97, no. 23, article 233901, 2006.
[148]  M. O. Williams and J. N. Kutz, “Spatial mode-locking of light bullets in planar waveguide arrays,” Optics Express, vol. 17, no. 20, pp. 18320–18329, 2009.
[149]  M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Physical Review E, vol. 62, no. 1, pp. R57–R59, 2000.
[150]  X. Hachair, S. Barbay, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Transverse spatial structure of a high fresnel number vertical external cavity surface emitting laser,” Optics Express, vol. 16, no. 13, pp. 9519–9527, 2008.
[151]  T. Ackemann, N. Radwell, and R. J?ger, “Optically controllable microlasers and 3D light confinement based on cavity solitons in vertical-cavity devices,” in Proceedings of the 2nd IEEE/LEOS Winter Topicals (WTM '09), pp. 136–137, 2009.
[152]  T. Ackemann, N. Radwell, C. Mcintyre, G. L. Oppo, and W. J. Firth, “Self pulsing solitons: a base for optically controllable pulse trains in photonic networks?” in Proceedings of the 12th International Conference on Transparent Optical Networks (ICTON '10), pp. 1–4, 2010.
[153]  A. J. Scroggie, W. J. Firth, and G. L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Physical Review A, vol. 80, no. 1, article 013829, 2009.
[154]  C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Physical Review Letters, vol. 69, no. 23, pp. 3314–3317, 1992.
[155]  H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nature Photonics, vol. 5, p. 273, 2011.
[156]  G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Reviews of Modern Physics, vol. 71, no. 5, pp. 1591–1639, 1999.
[157]  A. Amo, D. Sanvitto, F. P. Laussy et al., “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature, vol. 457, no. 7227, pp. 291–295, 2009.
[158]  J. Kasprzak, M. Richard, S. Kundermann et al., “Bose-Einstein condensation of exciton polaritons,” Nature, vol. 443, no. 7110, pp. 409–414, 2006.
[159]  S. Christopoulos, G. B. H. von H?gersthal, A. J. D. Grundy et al., “Room-temperature polariton lasing in semiconductor microcavities,” Physical Review Letters, vol. 98, no. 12, article 126405, 2007.
[160]  P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Physical Review Letters, vol. 84, no. 7, pp. 1547–1550, 2000.
[161]  A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Physical Review A, vol. 69, no. 2, pp. 238091–238098, 2004.
[162]  A. Baas, J. P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, “Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator,” Physical Review B, vol. 70, no. 16, Article ID 161307, pp. 1–4, 2004.
[163]  A. Tredicucci, Y. Chen, V. Pellegrini, M. B?rger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Physical Review A, vol. 54, no. 4, pp. 3493–3498, 1996.
[164]  M. Gurioli, L. Cavigli, G. Khitrova, and H. M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semiconductor Science and Technology, vol. 19, no. 4, pp. S345–S347, 2004.
[165]  L. Cavigli and M. Gurioli, “Optical bistability and laserlike emission in a semiconductor microcavity,” Physical Review B, vol. 71, no. 3, Article ID 035317, pp. 1–7, 2005.
[166]  D. Bajoni, E. Semenova, A. Lema?tre et al., “Optical bistability in a GaAs-based polariton diode,” Physical Review Letters, vol. 101, no. 26, article 266402, 2008.
[167]  Y. Larionova, W. Stolz, and C. O. Weiss, “Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity,” Optics Letters, vol. 33, no. 4, pp. 321–323, 2008.
[168]  D. Bajoni, P. Senellart, E. Wertz et al., “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Physical Review Letters, vol. 100, no. 4, article 047401, 2008.
[169]  A. Amo, T. C. H. Liew, C. Adrados et al., “Exciton-polariton spin switches,” Nature Photonics, vol. 4, no. 6, pp. 361–366, 2010.
[170]  O. A. Egorov, A. V. Gorbach, F. Lederer, and D. V. Skryabin, “Two-dimensional localization of exciton polaritons in microcavities,” Physical Review Letters, vol. 105, no. 7, article 073903, 2010.
[171]  A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Physical Review A, vol. 78, no. 6, article 061801, 2008.
[172]  O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Physical Review Letters, vol. 102, no. 15, article 153904, 2009.
[173]  W. L. Zhang and S. F. Yu, “Vectorial polariton solitons in semiconductor microcavities,” Optics Express, vol. 18, no. 20, pp. 21219–21224, 2010.
[174]  O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Physical Review B, vol. 82, no. 16, article 165326, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133