全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers

DOI: 10.1155/2012/280920

Full-Text   Cite this paper   Add to My Lib

Abstract:

We review the design, fabrication, and performance of photonic crystal vertical cavity surface emitting lasers (VCSELs). Using a periodic pattern of etched holes in the top facet of the VCSEL, the optical cavity can be designed to support the fundamental mode only. The electrical confinement is independently defined by proton implantation or oxide confinement. By control of the refractive index and loss created by the photonic crystal, operation in the Gaussian mode can be insured, independent of the lasing wavelength. 1. Introduction Vertical cavity surface emitting lasers (VCSELs) have emerged as the commercial laser source of choice for short distance digital fiber optical interconnects and sensing applications. The principle advantage that VCSELs have in many of these applications are their low operating power requirements (only a few mW) as well as their low cost and large volume manufacturing. Compared to edge emitting semiconductor lasers, VCSELs also possess the benefits of a circular output beam, on wafer testing, and the ability to form 2-dimensional arrays. The most common emission wavelength is 850?nm, although wavelengths from 640 to 1300?nm have been demonstrated for VCSELs monolithically grown on GaAs substrates. Unlike an edge emitting laser, VCSELs have a single longitudinal mode but tend to operate in multiple transverse optical modes. This arises because the optical cavity of the VCSEL is short in the direction of light propagation (typically the cavity is 1 wavelength long, or approx. 265?nm for 850?nm emission), but the transverse cavity width defined by a selectively oxidized or ion implanted aperture [1] is much greater (typically a few to tens of microns in diameter). Edge emitting semiconductor lasers have much longer cavities (several hundreds of microns in length) supporting numerous longitudinal modes, but with a cavity cross-section that supports a few or a single transverse/lateral mode. The number of laser emission modes will influence the spectral width of the laser emission, while the near field and far field beam profile is determined by the transverse mode profiles. For a typical multimode 850?nm VCSEL, the emission bandwidth can be roughly 3?nm, while the far field is often a ring shape, due to the higher order mode operation. The multimode VCSEL bandwidth can be a limiting factor for high speed digital modulation through optical fiber due to spectral dispersion, while the smallest focused spot size will come from operation only in the fundamental Gaussian mode. Many approaches to achieve single fundamental mode

References

[1]  K. D. Choquette and K. M. Geib, “Fabrication and performance of vertical cavity surface emitting lasers,” in Vertical Cavity Surface Emitting Lasers, C. Wilmsen, H. Temkin, L. Coldren, et al., Eds., chapter 5, Cambridge University Press, Cambridge, UK, 1999.
[2]  C. Jung, R. Jager, M. Grabherr, et al., “4.8 mW single-mode oxide confined top surface emitting vertical-cavity laser diodes,” Electronics Letters, vol. 33, no. 21, pp. 1790–1791, 1997.
[3]  R. A. Morgan, G. D. Guth, M. W. Focht et al., “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photonics Technology Letters, vol. 5, no. 4, pp. 374–377, 1993.
[4]  E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photonics Technology Letters, vol. 13, no. 9, pp. 927–929, 2001.
[5]  H. Martinsson, J. A. Vuku?i?, M. Grabherr et al., “Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief,” IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1536–1538, 1999.
[6]  H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Kicherer, M. C. Riedl, and K. J. Ebeling, “Improving single-mode VCSEL performance by introducing a long monolithic cavity,” IEEE Photonics Technology Letters, vol. 12, no. 8, pp. 939–941, 2000.
[7]  A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Applied Physics Letters, vol. 85, no. 22, pp. 5161–5163, 2004.
[8]  P. O. Leisher, A. J. Danner, J. J. Raftery Jr., and K. D. Choquette, “Proton implanted singlemode holey vertical-cavity surface-emitting lasers,” Electronics Letters, vol. 41, no. 18, pp. 1010–1011, 2005.
[9]  D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 80, no. 21, p. 3901, 2002.
[10]  N. Yokouchi, A. J. Danner, and K. D. Choquette, “Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, no. 5, pp. 1439–1445, 2003.
[11]  A. J. Danner, J. J. Raftery Jr., T. Kim, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “Progress in photonic crystal vertical cavity lasers,” IEICE Transactions on Electronics, vol. E88-C, no. 5, pp. 944–949, 2005.
[12]  N. Yokouchi, A. J. Danner, and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures,” Applied Physics Letters, vol. 82, no. 9, pp. 1344–1346, 2003.
[13]  A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electronics Letters, vol. 41, no. 6, pp. 325–326, 2005.
[14]  H. P. D. Yang, F. I. Lai, Y. H. Chang et al., “Singlemode (SMSR < 40?dB) proton-implanted phptonic crystal vertical-cavity surface-emitting lasers,” Electronics Letters, vol. 41, no. 6, pp. 326–328, 2005.
[15]  T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, vol. 22, no. 13, pp. 961–963, 1997.
[16]  A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Applied Physics Letters, vol. 85, no. 22, pp. 5161–5163, 2004.
[17]  P. O. Leisher, A. J. Danner, J. J. Raftery, D. Siriani, and K. D. Choquette, “Loss and index guiding in single-mode proton-implanted holey vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 42, no. 10, pp. 1091–1096, 2006.
[18]  A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, and K. D. Choquette, “Photonic crystal vertical cavity lasers with wavelength-independent single-mode behavior,” IEEE Photonics Technology Letters, vol. 20, no. 23, pp. 2010–2012, 2008.
[19]  C. Chen, Z. Tian, K. D. Choquette, and D. V. Plant, “25-Gb/s direct modulation of implant confined holey vertical-cavity surface-emitting lasers,” IEEE Photonics Technology Letters, vol. 22, no. 7, pp. 465–467, 2010.
[20]  A. M. Kasten, J. D. Sulkin, P. O. Leisher, D. K. McElfresh, D. Vacar, and K. D. Choquette, “Manufacturable photonic crystal single-mode and fluidic vertical-cavity surface-emitting lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 4, pp. 1123–1131, 2008.
[21]  P. O. Leisher, A. J. Danner, and K. D. Choquette, “Single-mode 1.3-μm photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2156–2158, 2006.
[22]  R. A. Gottscho and C. W. Jurgensen, “Microscopic uniformity in plasma etching,” Journal of Vacuum Science & Technology B, vol. 10, p. 2133, 1992.
[23]  K. D. Choquette, R. P. Schneider Jr., K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electronics Letters, vol. 30, no. 24, pp. 2043–2044, 1994.
[24]  M. S. Alias, S. Shaari, P. O. Leisher, and K. D. Choquette, “Single transverse mode control of VCSEL by photonic crystal and trench patterning,” Photonics and Nanostructures, vol. 8, no. 1, pp. 38–46, 2010.
[25]  D. F. Siriani, P. O. Leisher, and K. D. Choquette, “Loss-induced confinement in photonic crystal vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 45, no. 7, pp. 762–768, 2009.
[26]  D. F. Siriani, M. P. Tan, A. M. Kasten et al., “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 3, Article ID 4781555, pp. 909–917, 2009.
[27]  P. Bienstman, R. Baets, J. Vukusic et al., “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE Journal of Quantum Electronics, vol. 37, no. 12, pp. 1618–1631, 2001.
[28]  T. Czyszanowski, M. Dems, and K. Panajotov, “Single mode condition and modes discrimination in photonic-crystal 1.3?μm AlInGaAs/InP VCSEL,” Optics Express, vol. 15, no. 9, pp. 5604–5609, 2007.
[29]  T. Czyszanowski, M. Dems, and K. Panajotov, “Optimal parameters of photonic-crystal vertical-cavity surface-emitting diode lasers,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2331–2336, 2007.
[30]  G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Optics Letters, vol. 20, no. 13, pp. 1483–1485, 1995.
[31]  A. E. Siegman, “Propagating modes in gain-guided optical fibers,” Journal of the Optical Society of America A, vol. 20, no. 8, pp. 1617–1628, 2003.
[32]  R. S. Quimby, Photonics and Lasers, John Wiley & Sons, New Jersey, NJ, USA, 2006.
[33]  A. J. Danner, J. J. Raftery Jr., P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Applied Physics Letters, vol. 88, no. 9, Article ID 091114, 2006.
[34]  G. Hasnain, K. Tai, L. Yang et al., “Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors,” IEEE Journal of Quantum Electronics, vol. 27, no. 6, pp. 1377–1385, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133