全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

How Many Seals Were There? The Global Shelf Loss during the Last Glacial Maximum and Its Effect on the Size and Distribution of Grey Seal Populations

DOI: 10.1371/journal.pone.0053000

Full-Text   Cite this paper   Add to My Lib

Abstract:

Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so.

References

[1]  Rice J (2003) Environmental health indicators. Ocean & Coastal Management 46: 235–259.
[2]  Kovacs KM, Aguilar A, Aurioles D, Burkanov V, Campagna C, et al. (2012) Global threats to pinnipeds. Marine Mammal Science 28: 414–436.
[3]  Moore SE (2005) Long-term environmental change and marine mammals. Marine Mammal Research: Conservation Beyond Crisis: 137–147.
[4]  Bowen WD, Baker JD, Boyd IL, Estes JA, Ford JKB, et al.. (2010) Long-term studies. In: Boyd IL, Bowen WD, Iverson SJ, editors. Marine Mammal Ecology and Conservation: A handbook of techniques. Oxford: Oxford University Press. 283–305.
[5]  Biuw M, Boehme L, Guinet C, Hindell M, Costa D, et al. (2007) Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proceedings of the National Academy of Sciences of the United States of America 104: 13705–13710.
[6]  Harington CR (2008) The evolution of Arctic marine mammals. Ecological Applications 18: S23–S40.
[7]  Harwood J (2001) Marine mammals and their environment in the twenty-first century. Journal of Mammalogy 82: 630–640.
[8]  McMahon CR, Burton HR (2005) Climate change and seal survival: evidence for environmentally mediated changes in elephant seal, Mirounga leonina, pup survival. Proceedings of the Royal Society B-Biological Sciences 272: 923–928.
[9]  Darwin CR (1859) The origin of species by means of natural selection. London, UK: John Murray.
[10]  Vibe C (1967) Arctic animals in relation to climatic fluctuations. Meddelelser om Gr?nland 170: 1–226.
[11]  Winton M (2006) Does the Arctic sea ice have a tipping point? Geophysical Research Letters 33.
[12]  Winton M (2006) Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophysical Research Letters 33.
[13]  Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett 34: L09501.
[14]  Overpeck JT, Sturm M, Francis JA, Perovich DK, Serreze MC, et al.. (2005) Arctic System on Trajectory to New, Seasonally Ice-Free State. EOS 86.
[15]  Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, et al. (2004) Extinction risk from climate change. Nature 427: 145–148.
[16]  OSPAR Commission (2000) Assessment of climate change mitigation and Adaptation. London: OSPAR Commission. 41 p.
[17]  Bigg GR, Cunningham CW, Ottersen G, Pogson GH, Wadley MR, et al. (2008) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proceedings of the Royal Society B-Biological Sciences 275: 163–U113.
[18]  Hanebuth TJJ, Stattegger K, Bojanowski A (2009) Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited. Global and Planetary Change 66: 76–84.
[19]  Clark PU, Mix AC (2002) Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21: 1–7.
[20]  Jahnke RA (2010) Global Synthesis. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis: 597–615.
[21]  Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles 19.
[22]  Pauly D, Christensen V (1995) Primary Production Required to Sustain Global Fisheries. Nature 374: 255–257.
[23]  Boyer T, Levitus S, Garcia H, Locarnini RA, Stephens C, et al. (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the world ocean on a 0.25 degrees grid. International Journal of Climatology 25: 931–945.
[24]  National Ice Center (2006) National Ice Center Arctic sea ice charts and climatologies in gridded format. In: Fetterer F, Fowler C, editors. Boulder, Colorado USA: National Snow and Ice Data Center.
[25]  Row LW, Hastings DA, Dunbar PK (1995) TerrainBase Worldwide Digital Terrain Data. In: NOAA N, NGDC, editor: NGDC Key to Geophysical Records Documentation No. 30.
[26]  Members CP (1981) Seasonal reconstruction of the earth's surface at the last glacial maximum: Geological Society of America. 18 p.
[27]  Pflaumann U, Sarnthein M, Chapman M, d'Abreu L, Funnell B, et al.. (2003) Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18.
[28]  Sarnthein M, Gersonde R, Niebler S, Pflaumann U, Spielhagen R, et al.. (2003) Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000). Paleoceanography 18.
[29]  Meland MY, Jansen E, Elderfield H (2005) Constraints on SST estimates for the northern North Atlantic Nordic seas during the LGM. Quaternary Science Reviews 24: 835–852.
[30]  Paul A, Schafer-Neth C (2003) Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum. Paleoceanography 18.
[31]  Peltier WR, Fairbanks RG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25: 3322–3337.
[32]  Mcconnell BJ, Chambers C, Nicholas KS, Fedak MA (1992) Satellite Tracking of Gray Seals (Halichoerus-Grypus). Journal of Zoology 226: 271–282.
[33]  Fedak M, Lovell P, McConnell B, Hunter C (2002) Overcoming the constraints of long range radio telemetry from animals: Getting more useful data from smaller packages. Integrative and Comparative Biology 42: 3–10.
[34]  Boehme L, Lovell P, Biuw M, Roquet F, Nicholson J, et al. (2009) Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection. Ocean Science 5: 685–695.
[35]  Argos (2011) Argos User's Manual. Worldwide tracking and environmental monitoring by satellite: Collecte Localisation Satellites. 68.
[36]  Vincent C, McConnell BJ, Ridoux V, Fedak MA (2002) Assessment of Argos location accuracy from satellite tags deployed on captive gray seals. Marine Mammal Science 18: 156–166.
[37]  McConnell BJ, Fedak MA, Lovell P, Hammond PS (1999) Movements and foraging areas of grey seals in the North Sea. Journal of Applied Ecology 36: 573–590.
[38]  Austin D, Bowen WD, McMillan JI, Iverson SJ (2006) Linking movement, diving, and habitat to foraging success in a large marine predator. Ecology 87: 3095–3108.
[39]  Thompson D, Hammond PS, Nicholas KS, Fedak MA (1991) Movements, Diving and Foraging Behavior of Gray Seals (Halichoerus-Grypus). Journal of Zoology 224: 223–232.
[40]  Gerondeau M, Barbraud C, Ridoux V, Vincent C (2007) Abundance estimate and seasonal patterns of grey seal (Halichoerus grypus) occurrence in Brittany, France, as assessed by photo-identification and capture-mark-recapture. Journal of the Marine Biological Association of the United Kingdom 87: 365–372.
[41]  Breed GA, Bowen WD, Leonard ML (2011) Development of foraging strategies with age in a long-lived marine predator. Marine Ecology-Progress Series 431: 267?+.
[42]  Breed GA, Jonsen ID, Myers RA, Bowen WD, Leonard ML (2009) Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology 90: 3209–3221.
[43]  Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. : NOAA Technical Memorandum NESDIS NGDC-24: 19.
[44]  Mcconnell BJ, Chambers C, Fedak MA (1992) Foraging Ecology of Southern Elephant Seals in Relation to the Bathymetry and Productivity of the Southern-Ocean. Antarctic Science 4: 393–398.
[45]  Grist JP, Josey SA, Boehme L, Meredith MP, Davidson FJM, et al.. (2011) Temperature signature of high latitude Atlantic boundary currents revealed by marine mammal-borne sensor and Argo data. Geophysical Research Letters 38.
[46]  SMRU Instrumentation Group (2012) Argos & GPS/Argos SRDL Tags. 4.
[47]  Fedak MA, Lovell P, Grant SM (2001) Two approaches to compressing and interpreting time-depth information as collected by time-depth recorders and satellite-linked data recorders. Marine Mammal Science 17: 94–110.
[48]  Thompson D, Fedak MA (1993) Cardiac Responses of Gray Seals during Diving at Sea. Journal of Experimental Biology 174: 139–164.
[49]  Breed GA, Bowen WD, McMillan JI, Leonard ML (2006) Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proceedings of the Royal Society B-Biological Sciences 273: 2319–2326.
[50]  Austin D, Bowen WD, McMillan JI (2004) Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator. Oikos 105: 15–30.
[51]  Harding KC, Harkonen TJ (1999) Development in the Baltic grey seal (Halichoerus grypus) and ringed seal (Phoca hispida) populations during the 20th century. Ambio 28: 619–627.
[52]  Haug T, Henriksen G, Kondakov A, Mishin V, Nilssen KT, et al. (1994) The Status of Grey Seals Halichoerus-Grypus in North Norway and on the Murman Coast, Russia. Biological Conservation 70: 59–67.
[53]  Nilssen KT, Haug T (2007) Status of grey seals (Halichoerus grypus) in Norway. In: Haug T, Hammill M, Olafsdottir D, editors. Grey seals in the North Atlantic and the Baltic: NAMMCO scientific publications. 23–31.
[54]  Mikkelsen B (2007) Present knowledge of grey seals (Halichoerus grypus) in Faroese waters. In: Haug T, Hammill M, Olafsdottir D, editors. Grey seals in the North Atlantic and the Baltic: NAMMCO scientific publications. 79–84.
[55]  Hauksson E (2007) Abundance of grey seals in Icelandic waters, based on trends of pup-counts from aerial surveys. In: Haug T, Hammill M, Olafsdottir D, editors. Grey seals in the North Atlantic and the Baltic: NAMMCO scientific publications. 85–97.
[56]  Wood SA, Brault S, Gilbert JR (2007) Aerial Surveys of Grey Seals in the Northeastern United States. In: Haug T, Hammill M, Olafsdottir D, editors. Grey seals in the North Atlantic and the Baltic: NAMMCO scientific publications. 117–121.
[57]  Wood SA, Frasier TR, McLeod BA, Gilbert JR, White BN, et al. (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the northwest Atlantic. Canadian Journal of Zoology-Revue Canadienne De Zoologie 89: 490–497.
[58]  Rosvig-Asvid A (2010) Seals of Greenland: Ilinniusirfik Undervisnigsmiddelforlag. 144 p.
[59]  Mansfield AW (1965) The grey seal Halichoerus grypus (Fabricus) in eastern Canadian waters.: Fisheries Research Board of Canada. 28 p.
[60]  Vincent C, Fedak MA, McConnell JB, Meynier L, Saint-Jean C, et al. (2005) Status and conservation of the grey seal, Halichoerus grypus, in France. Biological Conservation 126: 62–73.
[61]  Vincent C, Fedak MA, Ridoux V (2003) Marine habitat use by grey seals in Brittany: application to the Marine National Park of the Iroise Sea. Electronic Marking and Telemetric Tracking of Large Migratory Marine Vertebrates: 101–119.
[62]  Aarts G, Fieberg J, Matthiopoulos J (2012) Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution 3: 177–187.
[63]  Guthrie RD (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews 20: 549–574.
[64]  Rivals F, Mihlbachler MC, Solounias N, Mol D, Semprebon GM, et al. (2010) Palaeoecology of the Mammoth Steppe fauna from the late Pleistocene of the North Sea and Alaska: Separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeography Palaeoclimatology Palaeoecology 286: 42–54.
[65]  Stirling I (1983) The evolution of mating systems in pinnipeds. In: Eisenberg JF, Kleinman DG, editors. The evolution of mating systems in pinnipeds: The evolution of mating systems in pinnipeds. 489–527.
[66]  Waters JM (2008) Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Diversity and Distributions 14: 692–700.
[67]  Clarke A, Crame JA (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philosophical Transactions of the Royal Society B-Biological Sciences 365: 3655–3666.
[68]  Pauly D, Christensen V, Guenette S, Pitcher TJ, Sumaila UR, et al. (2002) Towards sustainability in world fisheries. Nature 418: 689–695.
[69]  Lydersen C, Nost OA, Kovacs KM, Fedak MA (2004) Temperature data from Norwegian and Russian waters of the northern Barents Sea collected by free-living ringed seals. Journal of Marine Systems 46: 99–108.
[70]  Freitas C, Kovacs KM, Ims RA, Fedak MA, Lydersen C (2008) Ringed seal post-moulting movement tactics and habitat selection. Oecologia 155: 193–204.
[71]  Freitas C, Kovacs KM, Ims RA, Lydersen C (2008) Predicting habitat use by ringed seals (Phoca hispida) in a warming Arctic. Ecological Modelling 217: 19–32.
[72]  SCOS (2011) Scientific Advice on Matters Related to the Management of Seal Populations: 2011. SCOS main advice report. 133 p.
[73]  Duck CD, Thompson D (2007) The status of grey seals in Britain. In: Haug T, Hammill M, Olafsdottir D, editors. Grey seals in the North Atlantic and the Baltic: NAMMCO scientific publications. 69–78.
[74]  Vie J-C, Hilton-Taylor C, Stuart SN (2009) Wildlife in a changing World – An Analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland: IUCN. 180 p.
[75]  IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1; IUCN Species Survival Commision, editor. Gland, Switzerland and Cambridge, UK: IUCN. 30 p.
[76]  Dulvy NK, Rogers SI, Jennings S, Stelzenmuller V, Dye SR, et al. (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology 45: 1029–1039.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133