全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Glitter-Like Iridescence within the Bacteroidetes Especially Cellulophaga spp.: Optical Properties and Correlation with Gliding Motility

DOI: 10.1371/journal.pone.0052900

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iridescence results from structures that generate color. Iridescence of bacterial colonies has recently been described and illustrated. The glitter-like iridescence class, created especially for a few strains of Cellulophaga lytica, exhibits an intense iridescence under direct illumination. Such color appearance effects were previously associated with other bacteria from the Bacteroidetes phylum, but without clear elucidation and illustration. To this end, we compared various bacterial strains to which the iridescent trait was attributed. All Cellulophaga species and additional Bacteroidetes strains from marine and terrestrial environments were investigated. A selection of bacteria, mostly marine in origin, were found to be iridescent. Although a common pattern of reflected wavelengths was recorded for the species investigated, optical spectroscopy and physical measurements revealed a range of different glitter-like iridescence intensity and color profiles. Importantly, gliding motility was found to be a common feature of all iridescent colonies. Dynamic analyses of “glitter” formation at the edges of C. lytica colonies showed that iridescence was correlated with layer superposition. Both gliding motility, and unknown cell-to-cell communication processes, may be required for the establishment, in time and space, of the necessary periodic structures responsible for the iridescent appearance of Bacteroidetes.

References

[1]  Fox DL (1976) Animal biochromes and structural colors: physical, chemical, distributional & physiological features of colored bodies in the animal world, 2nd ed. University of California Press: Berkeley. 433 p.
[2]  Land M (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24: 75–106.
[3]  Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (2001) Structural color: now you see it-now you don't. Nature 410: 36.
[4]  Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424: 6950, 852–855.
[5]  Ghiradella H (1991) Light and color on the wing: structural colors in butterflies and moths. Appl Optics 30: 3492–3500.
[6]  Seago AE, Brady P, Vigneron J-P, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural color mechanisms in beetles (Coleoptera). J R Soc Interface 6: S165–S184.
[7]  Greenewalt CH, Brandt W, Friel DD (1960) The iridescent colors of hummingbird feathers. Proc Am Philos Soc 104: 249–253.
[8]  Prum RO, Torres R (2003) Structural coloration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 206: 2409–2429.
[9]  Doucet SM, Shawkey MD, Hill GE, Montgomerie R (2006) Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in color. J Exp Biol 209: 380–390.
[10]  Lythgoe JN, Shand J (1989) The structural basis for iridescent color changes in dermal and corneal iridophores in fish. J Exp Biol 141: 313–325.
[11]  Williams RC, Smith KM (1958) The polyhedral form of the Tipula iridescent virus. Biochim Biophys Acta 28: 464–469.
[12]  Welch V, Vigneron J-P, Lousse V, Parker A (2006) Optical properties of the iridescent organ of the comb-jellyfish Bero? cucumis (Ctenophora). Phys Rev E 73: 0419161–0419167.
[13]  Noyes J, Sumper M, Vukusic P (2008) Light manipulation in a marine diatom. J Mater Res 23: 3229–3232.
[14]  Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6: S115–S132.
[15]  Engboek HC (1950) The phenomenon of iridescence in bacterial cultures, with particular reference to Pfeiffer's bacillus. Acta Pathol Microbiol 27: 388–393.
[16]  Guillot M (1941) Relation entre certaines propriétés optiques des bactéries et leur forme géométrique vraie. Diffraction de la lumière par les cultures et symétrie de la bactérie. C R Hebd Seances Acad Sci 1100–1103.
[17]  Nogrady G, Guérault A (1964) Conditions favorisant l'iridescence bactérienne et l'observation du phénomène. Rev Can Biol 23: 367–373.
[18]  Pijper A (1918) Diffraction phenomena in cultures of micro?ganisms. Med J S Afr 14: 211–218.
[19]  Pijper A (1923) Diffraction in biological structures. I. The structure of colonies of the coli-typhoid group. S Afr Med Rec 17: 243–248.
[20]  Ponder E (1934) Diffraction patterns produced by bacteria. J Exp Biol 11: 54–57.
[21]  Kientz B, Vukusic P, Luke S, Rosenfeld E (2012) Iridescence of a marine bacterium and classification of prokaryotic structural colors. Appl Environ Microbiol 78: 2092–2099.
[22]  Johansen JE, Nielsen P, Sj?holm C (1999) Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Evol Micr 49: 1231–1240.
[23]  Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244: 1–15.
[24]  Bowman JP (2011) Genus IX. Cellulophaga Johansen, Nielsen and Sj?holm 1999, 1238VP. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB, editors. Bergey's manual of systematic bacteriology, The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, 2nd ed., vol 4. Springer Press: New York Dordrecht Heidelberg London, pp. 176–180.
[25]  Bernardet J-F, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes, 3rd ed., vol. 7. Springer, New York Press: NY, pp. 455–480.
[26]  Reichenbach H (1989) Genus I. Cytophaga Winogradsky 1929, 577AL emend. In: Staley JT, Bryant MP, Pfennig N, Holt JG, editors. Bergey's manual of systematic Bacteriology, vol. 3. Williams & Wilkins Press: Baltimore, pp. 2015–2050.
[27]  Kientz B, Marié P, Rosenfeld E (2012) Effect of abiotic factors on the unique glitter-like iridescence of Cellulophaga lytica. FEMS Microbiol Lett 333 (2): 101–8.
[28]  Pati A, Abt B, Teshima H, Nolan M, Lapidus A, et al. (2011) Complete genome sequence of Cellulophaga lytica type strain (LIM-21T). Stand Genomic Sci 4: 221–232.
[29]  Lewin RA (1969) A Classification of Flexibacteria. Microbiology 58: 189–206.
[30]  Lewin RA, Lounsbery DM (1969) Isolation, cultivation and characterization of Flexibacteria. J Gen Microbiol 58: 145–170.
[31]  Jensen PR, Kauffman CA, Fenical W (1996) High recovery of culturable bacteria from the surfaces of marine algae. Mar Biol 126: 1–7.
[32]  van der Meulen HJ, Harder W, Veldkamp H (1974) Isolation and characterization of Cytophaga flevensis sp. n., a new agarolytic flexibacterium. Antonie van Leeuwenhoek J Microbiol Serol 40: 329–346.
[33]  Weeks OB (1955) Flavobacterium aquatile (Frankland and Frankland) Bergey et al., type species of the genus Flavobacterium. J Bacteriol 69: 649–658.
[34]  Reichenbach H, Dworkin M (1981) The Order Cytophagales (with addenda on the genera Herpetosiphon, Saprospira, and Flexithrix). In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The Prokaryotes: a handbook on habitats, isolation, and identification of bacteria, 1st ed., vol. 1. Springer-Verlag Press: Berlin, pp. 356–379.
[35]  Vukusic P, Stavenga DG (2009) Physical methods for investigating structural colours in biological systems. J R Soc Interface 6: S133–S148.
[36]  McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55: 49–75.
[37]  Kobelt F, Linsenmair KE (1992) Adaptations of the reed frog Hyperolius viridiflavus (Amphibia: Anura: Hyperoliidae) to its arid environment. VI. The iridophores in the skin as radiation reflectors. J Comp Physiol B 162: 314–26.
[38]  Meadows MG, Butler MW, Morehouse NI, Taylor LA, Toomey MB, et al. (2009) Iridescence: views from many angles. J R Soc Interface (Suppl. 2): S107–S113.
[39]  McBride MJ (2004) Cytophaga-Flavobacterium gliding motility. J Mol Microbiol Biotechnol 7: 63–71.
[40]  Abt B, Lu M, Misra M, Han C, Nolan M, et al. (2011) Complete genome sequence of Cellulophaga algicola type strain (IC166). Stand Genomic Sci 4: 72–80.
[41]  Braun TF, Khubbar MK, Saffarini DA, McBride MJ (2005) Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 18: 6943–6952.
[42]  Rhodes RG, Pucker HG, McBride MJ (2011) Development and use of a gene deletion strategy for Flavobacterium johnsoniae to identify the redundant gliding motility genes remF, remG, remH, and remI. J Bacteriol 193: 2418–28.
[43]  Vozniakovskaya YM, Rybakova ZP (1969) Some new data on ecology and properties of bacteria belonging to Promyxobacterium genus. Mikrobiologiya 38: 135–143.
[44]  Stanier RY (1947) Studies on Nonfruiting Myxobacteria: I. Cytophaga johnsonae, n.sp., a Chitin-decomposing Myxobacterium. J Bacteriol 53: 297–315.
[45]  Nedashkovskaya OI (2004) Cellulophaga pacifica sp. nov. Int J Syst Evol Microbiol 54: 609–613.
[46]  Dobson SJ, James SR, Franzmann PD, McMeekin TA (1991) A numerical taxonomic study of some pigmented bacteria isolated from Organic Lake, an Antarctic hypersaline lake. Arch Microbiol 156: 56–61.
[47]  Yoon JH, Kang SJ, Lee SY, Lee CH, Oh TK (2005) Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int J Syst Evol Microbiol 55: 2051–2055.
[48]  Bernardet JF, Bowman JP (2011) Genus I. Flavobacterium Bergey, Harrison, Breed, Hammer and Huntoon 1923, 97AL emend. Bernardet, Sergers, Vancanneyt, Berthe, Kersters and Vandamme 1996, 139, editors. Bergey's manual of systematic bacteriology, The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, 2nd ed., vol. 4. Springer Press: New York Dordrecht Heidelberg London. pp. 112–176.
[49]  Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868.
[50]  Kahng HY, Chung BS, Lee DH, Jung JS, Park JH, Jeon CO (2009) Cellulophaga tyrosinoxydans sp. nov., a tyrosinase-producing bacterium isolated from seawater. Int J Syst Evol Microbiol 59: 654–657.
[51]  Park S, Oh KH, Lee SY, Oh TK, Yoon JH (2012) Cellulophaga geojensis sp. nov., a member of the family Flavobacteriaceae isolated from marine sand. Int J Syst Evol Microbiol 62: 1354–1358.
[52]  Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004) Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54: 85–92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133