Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, a respiratory disease that is reemerging worldwide. Mechanisms of selective lymphocyte trafficking to the airways are likely to be critical in the immune response to this pathogen. We compared murine infection by B. pertussis, B. parapertussis, and a pertussis toxin-deleted B. pertussis mutant (BpΔPTX) to test the hypothesis that effector memory T-helper cells (emTh) display an altered pattern of trafficking receptor expression in B. pertussis infection due to a defect in imprinting. Increased cell recruitment to the lungs at 5 days post infection (p.i.) with B. parapertussis, and to a lesser extent with BpΔPTX, coincided with an increased frequency of circulating emTh cells expressing the mucosal-associated trafficking receptors α4β7 and α4β1 while a reduced population of these cells was observed in B. pertussis infection. These cells were highly evident in the blood and lungs in B. pertussis infection only at 25 days p.i. when B. parapertussis and BpΔPTX infections were resolved. Although at 5 days p.i., an equally high percentage of lung dendritic cells (DCs) from all infections expressed maturation markers, this expression persisted only in B. pertussis infection at 25 days p.i. Furthermore, at 5 days p.i with B. pertussis, lung DCs migration to draining lymph nodes may be compromised as evidenced by decreased frequency of CCR7+ DCs, inhibited CCR7-mediated in vitro migration, and fewer DCs in lung draining lymph nodes. Lastly, a reduced frequency of allogeneic CD4+ cells expressing α4β1 was detected following co-culture with lung DCs from B. pertussis-infected mice, suggesting a defect in DC imprinting in comparison to the other infection groups. The findings in this study suggest that B. pertussis may interfere with imprinting of lung-associated trafficking receptors on T lymphocytes leading to extended survival in the host and a prolonged course of disease.
References
[1]
McIntyre P, Wood N (2009) Pertussis in early infancy: disease burden and preventive strategies. Curr Opin Infect Dis 22: 215–223.
[2]
Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18: 326–382.
Goodwin MS, Weiss AA (1990) Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun 58: 3445–3447.
[5]
Verma A, Cheung AM, Burns DL (2008) Stabilization of the pertussis toxin secretion apparatus by the C terminus of PtlD. J Bacteriol 190: 7285–7290.
[6]
Katada T, Tamura M, Ui M (1983) The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch Biochem Biophys 224: 290–298.
[7]
Ui M, Okajima F, Katada T, Murayama T (1988) Roles of GTP regulatory proteins, the substrates of islet-activating protein, in receptor-mediated adenylate cyclase inhibition, phospholipase C activation, and cell proliferation. Adv Second Messenger Phosphoprotein Res 21: 39–45.
[8]
Nencioni L, Pizza MG, Volpini G, De Magistris MT, Giovannoni F, et al. (1991) Properties of the B oligomer of pertussis toxin. Infect Immun 59: 4732–4734.
[9]
Carbonetti NH, Artamonova GV, Mays RM, Worthington ZE (2003) Pertussis toxin plays an early role in respiratory tract colonization by Bordetella pertussis. Infect Immun 71: 6358–6366.
[10]
Carbonetti NH, Artamonova GV, Van Rooijen N, Ayala VI (2007) Pertussis toxin targets airway macrophages to promote Bordetella pertussis infection of the respiratory tract. Infect Immun 75: 1713–1720.
[11]
Andreasen C, Carbonetti NH (2008) Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. Infect Immun 76: 5139–5148.
[12]
Pero RS, Borchers MT, Spicher K, Ochkur SI, Sikora L, et al. (2007) Galphai2-mediated signaling events in the endothelium are involved in controlling leukocyte extravasation. Proc Natl Acad Sci U S A 104: 4371–4376.
[13]
Schneider OD, Weiss AA, Miller WE (2009) Pertussis toxin signals through the TCR to initiate cross-desensitization of the chemokine receptor CXCR4. J Immunol 182: 5730–5739.
[14]
Schneider OD, Millen SH, Weiss AA, Miller WE (2012) Mechanistic insight into pertussis toxin and lectin signaling using T cells engineered to express a CD8alpha/CD3zeta chimeric receptor. Biochemistry 51: 4126–4137.
[15]
Andreasen C, Powell DA, Carbonetti NH (2009) Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PLoS One 4: e7079.
[16]
Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, et al. (1999) Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med 190: 1241–1256.
[17]
Picker LJ, Michie SA, Rott LS, Butcher EC (1990) A unique phenotype of skin-associated lymphocytes in humans. Preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites. Am J Pathol 136: 1053–1068.
[18]
Picker LJ, Martin RJ, Trumble A, Newman LS, Collins PA, et al. (1994) Differential expression of lymphocyte homing receptors by human memory/effector T cells in pulmonary versus cutaneous immune effector sites. Eur J Immunol 24: 1269–1277.
[19]
de Bree GJ, van Leeuwen EM, Out TA, Jansen HM, Jonkers RE, et al. (2005) Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J Exp Med 202: 1433–1442.
[20]
Wolber FM, Curtis JL, Maly P, Kelly RJ, Smith P, et al. (1998) Endothelial selectins and alpha4 integrins regulate independent pathways of T lymphocyte recruitment in the pulmonary immune response. J Immunol 161: 4396–4403.
[21]
Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, et al. (2004) The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20: 167–179.
[22]
Thatte J, Dabak V, Williams MB, Braciale TJ, Ley K (2003) LFA-1 is required for retention of effector CD8 T cells in mouse lungs. Blood 101: 4916–4922.
[23]
Clark JG, Mandac-Dy JB, Dixon AE, Madtes DK, Burkhart KM, et al. (2004) Trafficking of Th1 cells to lung: a role for selectins and a P-selectin glycoprotein-1-independent ligand. Am J Respir Cell Mol Biol 30: 220–227.
[24]
Abitorabi MA, Mackay CR, Jerome EH, Osorio O, Butcher EC, et al. (1996) Differential expression of homing molecules on recirculating lymphocytes from sheep gut, peripheral, and lung lymph. J Immunol 156: 3111–3117.
[25]
Campbell JJ, Brightling CE, Symon FA, Qin S, Murphy KE, et al. (2001) Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J Immunol 166: 2842–2848.
[26]
Pittman M, Furman BL, Wardlaw AC (1980) Bordetella pertussis respiratory tract infection in the mouse: pathophysiological responses. J Infect Dis 142: 56–66.
[27]
Bergfors E, Trollfors B, Taranger J, Lagergard T, Sundh V, et al. (1999) Parapertussis and pertussis: differences and similarities in incidence, clinical course, and antibody responses. Int J Infect Dis 3: 140–146.
[28]
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, et al. (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35: 32–40.
[29]
Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, et al. (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 1: e45.
[30]
Arico B, Rappuoli R (1987) Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J Bacteriol 169: 2847–2853.
[31]
Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, et al. (2012) Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 13: 545.
[32]
Burns VC, Pishko EJ, Preston A, Maskell DJ, Harvill ET (2003) Role of Bordetella O antigen in respiratory tract infection. Infect Immun 71: 86–94.
[33]
Weiss AA, Hewlett EL, Myers GA, Falkow S (1983) Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun 42: 33–41.
[34]
Relman DA, Domenighini M, Tuomanen E, Rappuoli R, Falkow S (1989) Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A 86: 2637–2641.
[35]
McGuirk P, Mahon BP, Griffin F, Mills KH (1998) Compartmentalization of T cell responses following respiratory infection with Bordetella pertussis: hyporesponsiveness of lung T cells is associated with modulated expression of the co-stimulatory molecule CD28. Eur J Immunol 28: 153–163.
[36]
Boursaux-Eude C, Thiberge S, Carletti G, Guiso N (1999) Intranasal murine model of Bordetella pertussis infection: II. Sequence variation and protection induced by a tricomponent acellular vaccine. Vaccine 17: 2651–2660.
[37]
Garcia A, Niubo J, Benitez MA, Viqueira M, Perez JL (1996) Comparison of two leukocyte extraction methods for cytomegalovirus antigenemia assay. J Clin Microbiol 34: 182–184.
[38]
Avitsur R, Stark JL, Dhabhar FS, Sheridan JF (2002) Social stress alters splenocyte phenotype and function. J Neuroimmunol 132: 66–71.
[39]
Lyons AB, Doherty KV (2004) Flow cytometric analysis of cell division by dye dilution. Curr Protoc Cytom Chapter 9: Unit 9 11.
[40]
Kang SG, Park J, Cho JY, Ulrich B, Kim CH (2011) Complementary roles of retinoic acid and TGF-beta1 in coordinated expression of mucosal integrins by T cells. Mucosal Immunol 4: 66–82.
[41]
Shen S, Chuck MI, Zhu M, Fuller DM, Yang CW, et al. (2010) The importance of LAT in the activation, homeostasis, and regulatory function of T cells. J Biol Chem 285: 35393–35405.
[42]
Anis MM, Fulton SA, Reba SM, Liu Y, Harding CV, et al. (2008) Modulation of pulmonary dendritic cell function during mycobacterial infection. Infect Immun 76: 671–677.
[43]
Mora JR (2008) Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm Bowel Dis 14: 275–289.
[44]
Sigmundsdottir H, Butcher EC (2008) Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol 9: 981–987.
[45]
Vaya A, Miguel De la Fuente J, Suescun M, Espana E, Ricart JM (2012) Posterior ocular involvement in Behcet's disease and thrombophilic mutations. Clin Hemorheol Microcirc 51: 225–228.
[46]
Hauck CR, Agerer F, Muenzner P, Schmitter T (2006) Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 85: 235–242.
[47]
Stewart PL, Nemerow GR (2007) Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 15: 500–507.
[48]
Harvill ET, Preston A, Cotter PA, Allen AG, Maskell DJ, et al. (2000) Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection. Infect Immun 68: 6720–6728.
[49]
Khelef N, Bachelet CM, Vargaftig BB, Guiso N (1994) Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins or toxins. Infect Immun 62: 2893–2900.
[50]
Higgs R, Higgins SC, Ross PJ, Mills KH (2012) Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol 5: 485–500.
[51]
Pribila JT, Quale AC, Mueller KL, Shimizu Y (2004) Integrins and T cell-mediated immunity. Annu Rev Immunol 22: 157–180.
[52]
Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184: 1101–1109.
[53]
Ross PJ, Lavelle EC, Mills KH, Boyd AP (2004) Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect Immun 72: 1568–1579.
[54]
Skinner JA, Reissinger A, Shen H, Yuk MH (2004) Bordetella type III secretion and adenylate cyclase toxin synergize to drive dendritic cells into a semimature state. J Immunol 173: 1934–1940.
[55]
Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M, et al. (2005) Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 6: 889–894.
[56]
Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6: 1182–1190.
[57]
Sallusto F, Mackay CR, Lanzavecchia A (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18: 593–620.
[58]
Fedele G, Bianco M, Debrie AS, Locht C, Ausiello CM (2011) Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J Immunol 186: 5388–5396.
[59]
Kabashima K, Sugita K, Shiraishi N, Tamamura H, Fujii N, et al. (2007) CXCR4 engagement promotes dendritic cell survival and maturation. Biochem Biophys Res Commun 361: 1012–1016.
[60]
Kelsall BL, Leon F (2005) Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol Rev 206: 132–148.