全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Sickle Erythrocytes Target Cytotoxics to Hypoxic Tumor Microvessels and Potentiate a Tumoricidal Response

DOI: 10.1371/journal.pone.0052543

Full-Text   Cite this paper   Add to My Lib

Abstract:

Resistance of hypoxic solid tumor niches to chemotherapy and radiotherapy remains a major scientific challenge that calls for conceptually new approaches. Here we exploit a hitherto unrecognized ability of sickled erythrocytes (SSRBCs) but not normal RBCs (NLRBCs) to selectively target hypoxic tumor vascular microenviroment and induce diffuse vaso-occlusion. Within minutes after injection SSRBCs, but not NLRBCs, home and adhere to hypoxic 4T1 tumor vasculature with hemoglobin saturation levels at or below 10% that are distributed over 70% of the tumor space. The bound SSRBCs thereupon form microaggregates that obstruct/occlude up to 88% of tumor microvessels. Importantly, SSRBCs, but not normal RBCs, combined with exogenous prooxidant zinc protoporphyrin (ZnPP) induce a potent tumoricidal response via a mutual potentiating mechanism. In a clonogenic tumor cell survival assay, SSRBC surrogate hemin, along with H2O2 and ZnPP demonstrate a similar mutual potentiation and tumoricidal effect. In contrast to existing treatments directed only to the hypoxic tumor cell, the present approach targets the hypoxic tumor vascular environment and induces injury to both tumor microvessels and tumor cells using intrinsic SSRBC-derived oxidants and locally generated ROS. Thus, the SSRBC appears to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing cancer treatments.

References

[1]  Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358: 2039–2049.
[2]  Dewhirst MW (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res 172: 653–665.
[3]  Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8: 180–192.
[4]  Pries AR, Hopfner M, Noble F, Dewhirst MW, Secomb TW (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10: 587–593.
[5]  Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11: 393–410.
[6]  Reddy SB, Williamson SK (2009) Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs 8: 77–87.
[7]  Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6: 583–92.
[8]  Brown JM, William WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447.
[9]  Bennewith K, Dedhar S (2011) Targeting hypoxic tumour cells to overcome Metastasis. BMC Cancer 11: 504–510.
[10]  Stuart MJ, Nagel RL (2004) Sickle-cell disease. Lancet 364: 1343–60.
[11]  Faller D (1994) Vascular modulation. In: Embury S, Hebbel R, Mohandas N, and Steinberg M, editors. Sickle Cell Disease: Basic Principles and Clinical Practice. New York: Raven. pp. 235–246.
[12]  Embury SH (2004) The not-so-simple process of sickle cell vasoocclusion. Microcirculation 11: 101–13.
[13]  Osarogiagbon UR, Choong S, Belcher JD, Vercellotti GM, Paller MS, et al. (2000) Reperfusion injury pathophysiology in sickle transgenic mice. Blood 96: 314–320.
[14]  Belcher JD, Bryant CJ, Nguyen J, Bowlin PR, Kielbik MC, et al. (2003) Transgenic sickle mice have vascular inflammation. Blood 101: 3953–3959.
[15]  Solovey A, Lin Y, Browne P, Choong S, Wayner E, et al. (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337: 1584–1590.
[16]  Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet 376: 2018–31.
[17]  Brown MD, Wick TM, Eckman JR (2001) Activation of vascular endothelial cell adhesion molecule expression by sickle blood cells. Pediatr Pathol Mol Med 20: 47–72.
[18]  Smolinski PA, Offermann MK, Eckman JR, Wick TM (1995) Doublestranded RNA induces sickle erythrocyte adherence to endothelium: a potential role for viral infection in vaso-occlusive pain episodes in sickle cell anemia. Blood 85: 2945–2950.
[19]  Sultana C, Shen Y, Rattan V, Johnson C, Kalra VK (1998) Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood 92: 3924–3935.
[20]  Terada LS (2002) Oxidative stress and endothelial activation. Crit Care Med 30: S186–S191.
[21]  Kalambur VS, Mahaseth H, Bischof JC, Kielbik MC, Welch TE, et al. (2004) Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy. Am J Hematol 77: 117–125.
[22]  Telen MJ (2005) Erythrocyte adhesion receptors: blood group antigens and related molecules. Transfus Med Rev 19: 32–44.
[23]  Kaul DK, Hebbel RP (2000) Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest 106: 411–420.
[24]  Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177: 1277–86.
[25]  Belcher JD, Mahaseth H, Welch TE, Vilback AE, Sonbol KM, et al. (2005) Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am J Physiol Heart Circ Physiol 288: H2715–25.
[26]  Kaul DK, Finnegan E, Barabino GA (2009) Sickle red cell-endothelium interactions. Microcirculation 16: 97–111.
[27]  Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15: 542–6.
[28]  Dienst A, Grunow A, Unruh M, Rabausch B, N?r JE, et al. (2005) Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins. J Natl Cancer Inst 97: 733–747.
[29]  Kikkawa Y, Sudo R, Kon J, Mizuguchi T, Nomizu M, et al. (2008) Laminin alpha 5 mediates ectopic adhesion of hepatocellular carcinoma through integrins and/or Lutheran/basal cell adhesion molecule. Exp Cell Res 314: 2579–2590.
[30]  Zennadi R, Moeller BJ, Whalen EJ, Batchvarova M, Xu K, et al. (2004) Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood 104: 3774–3781.
[31]  Terman DS (1999) Compositions and Methods for Treatment of Neoplastic Disease. US patent Serial Number 7,803,637, filed August 30, 1999, issued September 28, 2012.
[32]  Brown SL, Ewing JR, Nagaraja TN, Swerdlow PS, Cao Y, et al. (2003) Sickle red blood cells accumulate in tumor. Magn Reson Med 50: 1209–14.
[33]  Milosevic M, Quirt I, Levin W, Fyles A, Manchul L, et al. (2001) Intratumoral sickling in a patient with cervix cancer and sickle trait: effect on blood flow and oxygenation. Gynecol Oncol 83: 428–31.
[34]  Agrawal A, Balpande DN, Khan A, Vagh SJ, Shukla S, et al. (2008) Sickle cell crisis leading to extensive necrosis in a low-grade glioma and masquerading high-grade lesion. Pediatr Neurosurg 44: 471–3.
[35]  Hebbel RP, Morgan WT, Eaton JW, Hedlund BE (1988) Accelerated autooxidation and heme loss due to instability of sickle hemoglobin. Proc Nat Acad Sci 85: 237–241.
[36]  Repka T, Hebbel RP (1991) Hydroxyl radical formation by sickle erythrocyte membranes: Role of pathologic iron deposits and cytoplasmic reducing agents. Blood 78: 2753–2758.
[37]  Ballas SK, Marcolina MJ (2006) Hyperhemolysis during the evolution of uncomplicated acute painful episodes in patients with sickle cell anemia. Transfusion 46: 105–110.
[38]  Hebbel RP, Eaton JW, Balasingam M, Steinberg MH (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70: 1253–1259.
[39]  Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21: 37–47.
[40]  Wood KC, Grander DN (2007) Sickle cell disease: Role of reactive oxygen and nitrogen metabolites. Clin Exp Pharm Physiol 34: 926–32.
[41]  Balla G, Vercellotti BM, Muller-Eberhard U, Eaton J, Jacob HS (1991) Exposure of Endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab. Invest 64: 648–655.
[42]  Simizu S, Takada M, Umezawa K, Imoto M (1998) Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 273: 26900–7.
[43]  Fang J, Sawa T, Akaike T, Greish K, Maeda H (2004) Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 109: 1–8.
[44]  Labbe RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: A metabolite with a mission. Clin Chem 45: 2060–2072.
[45]  Sigggaard-Andersen O, Wimberley PD, Gothgen I, Siggaard-Andersen M (1984) A mathematical model of the hemoglobin-oxygen dissociation curve of human blodd and of the oxygen partial pressure as a function of temperature. Clin Chem 30: 1646–1651.
[46]  Vishwanath K, Yuan H, Barry WT, Dewhirst MW, Ramanujam N (2009) Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors. Neoplasia 11 889–900.
[47]  Adam MF, Dorie MJ, Brown JM (1999) Oxygen tension measurements of tumors growing in mice. Int J Radiat Oncol Biol Phys 45: 171–80.
[48]  Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, et al. (2002) Pro-oxidant and cytotoxic effects of circulating heme. Blood 100: 879–887.
[49]  Jozkowicz A, Was H, Dulak J (2007) Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal 9: 2099–2117.
[50]  Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, et al. (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272: 5375–81.
[51]  Du GJ, Song ZH, Lin HH, Han XF, Zhang S, et al. (2008) Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells. Biochem Biophys Res Commun 372: 497–502.
[52]  Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52: 1399–1405.
[53]  Cao YT, Li CY, Moeller BJ, Yu D, Zhao Y, et al. (2005) Observation of incipient tumor angiogenesis that is independent of hypoxia and hypoxia inducible factor-1 activation. Cancer Res 65: 5498–5505.
[54]  Zennadi R, Whalen EJ, Batchvarova M, Xu K, Shan S, et al. (2007) Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood 110: 2708–2717.
[55]  Unthank JL, Lash JM, Nixon JC, Sidner RA, Bohlen HG (1993) Evaluation of carbocyanine-labeled erythrocytes for microvascular measurements. Microvasc Res 45: 193–210.
[56]  Algire GH, Legallais FY (1949) Recent developments in the transparent-chamber technique as adapted to the mouse. J Natl Cancer Inst 10: 225–253.
[57]  Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW (2005) Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt 10: 44004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133