全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Survival of the Stillest: Predator Avoidance in Shark Embryos

DOI: 10.1371/journal.pone.0052551

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sharks use highly sensitive electroreceptors to detect the electric fields emitted by potential prey. However, it is not known whether prey animals are able to modulate their own bioelectrical signals to reduce predation risk. Here, we show that some shark (Chiloscyllium punctatum) embryos can detect predator-mimicking electric fields and respond by ceasing their respiratory gill movements. Despite being confined to the small space within the egg case, where they are vulnerable to predators, embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response. Knowledge of such behaviours, may inform the development of effective shark repellents.

References

[1]  Kalmijn A (1971) The electric sense of sharks and rays. J Exp Biol 55: 371–383.
[2]  Kempster RM, McCarthy ID, Collin SP (2012) Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J Fish Biol 80: 2055–2088.
[3]  Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202: 129–132.
[4]  Sisneros JA, Tricas TC, Luer CA (1998) Response properties and biological function of the skate electrosensory system during ontogeny. J Comp Physiol A 183: 87–99.
[5]  Peters RC, Evers HP (1985) Frequency selectivity in the ampullary system of an elasmobranch fish (Scyliorhinus canicula). J Exp Biol 118: 99–109.
[6]  Kalmijn A (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A, editor. Handbook of Sensory Physiology. Berlin: Springer Verlag. pp. 147–200.
[7]  Paulin M (1995) Electroreception and the compass sense of sharks. J Theor Biol 174: 325–339.
[8]  Montgomery J, Walker M (2001) Orientation and navigation in elasmobranchs: which way forward? Environ Biol Fishes 60: 109–116.
[9]  Tricas TC (1982) Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum. Copeia 1982: 948–952.
[10]  Rivera-Vicente AC, Sewell J, Tricas TC (2011) Electrosensitive spatial vectors in elasmobranch fishes: Implications for source localization. PLoS ONE 6: e16008.
[11]  Harahush BK, Fischer ABP, Collin SP (2007) Captive breeding and embryonic development of Chiloscyllium punctatum Muller & Henle, 1838 (Elasmobranchii: Hemiscyllidae). J Fish Biol 71: 1007–1022.
[12]  Cox DL, Koob TJ (1993) Predation on elasmobranch eggs. Environ Biol Fishes 38: 117–125.
[13]  Sisneros JA, Tricas TC (2002) Neuroethology and life history adaptations of the elasmobranch electric sense. J Physiology-Paris 96: 379–389.
[14]  Ballard WW, Mellinger J, Lechenault HA (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool 267: 318–336.
[15]  Freitas R, Zhang GJ, Albert JS, Evans DH, Cohn MJ (2006) Developmental origin of shark electrosensory organs. Evol Dev 8: 74–80.
[16]  Moen AN, DellaFera M, Hiller A, Buxton B (1978) Heart rates of white-tailed deer fawns in response to recorded wolf howls. Can J Zoolog 56: 1207–1210.
[17]  Smith EN, Johnson C, Artin KJ (1981) Fear bradycardia in captive eastern chipmunk, Tamias striatus. Comp Biochem Phys A 70: 529–532.
[18]  Espmark Y, Langvatn R (1985) Development and habituation of cardiac and behavioral responses in young red deer calves (Cervus elaphus) Exposed to alarm stimuli. J Mammal 66: 702–711.
[19]  Honma A, Oku S, Nishida T (2006) Adaptive significance of death feigning posture as a specialized inducible defence against gape-limited predators. P Roy Soc B 273: 1631–1636.
[20]  Smith EN (2006) Passive fear: Alternative to fight or flight: When frightened animals hide. New England: iUniverse. pp. 112.
[21]  Bowers K, Natterson-Horowitz B (2012) Zoobiquity: What animals can teach us about health and the science of healing. New York: Knopf. pp. 320.
[22]  Sisneros JA, Tricas TC (2002) Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina). Brain Behav Evolut 59: 130–140.
[23]  Kalmijn A (1988) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN, editors. Sensory biology of aquatic animals. New York: Springer-Verlag. pp. 151–186.
[24]  Huveneers C, Rogers PJ, Semmens J, Beckmann C, Kock AA, et al. (2012) Effects of the Shark Shield? electric deterrent on the behaviour of White Sharks (Carcharodon carcharias). SARDI Res Rep Ser No. 632.
[25]  Kajiura SM, Holland K (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205: 3609.
[26]  Wueringer BE, Squire L, Kajiura SM, Tibbetts IR, Hart NS, et al. (2012) Electric field detection in sawfish and shovelnose rays. PLoS ONE 7: e41605.
[27]  Kalmijn A (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218: 916.
[28]  Kajiura SM, Fitzgerald TP (2009) Response of juvenile scalloped hammerhead sharks to electric stimuli. Zoology 112: 241–250.
[29]  Fitzgerald TP (2002) Behavioural responses of juvenile sandbar sharks, Carcharhinus plumbeus to direct current and alternating current stimuli. Thesis, University of Hawaii.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133