全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Kar3Vik1 Uses a Minus-End Directed Powerstroke for Movement along Microtubules

DOI: 10.1371/journal.pone.0053792

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have used cryo-electron microscopy (cryo-EM) and helical averaging to examine the 3-D structure of the heterodimeric kinesin-14 Kar3Vik1 complexed to microtubules at a resolution of 2.5 nm. 3-D maps were obtained at key points in Kar3Vik1’s nucleotide hydrolysis cycle to gain insight into the mechanism that this motor uses for retrograde motility. In all states where Kar3Vik1 maintained a strong interaction with the microtubule, we found, as observed by cryo-EM, that the motor bound with one head domain while the second head extended outwards. 3-D reconstructions of Kar3Vik1-microtubule complexes revealed that in the nucleotide-free state, the motor’s coiled-coil stalk points toward the plus-end of the microtubule. In the ATP-state, the outer head is shown to undergo a large rotation that reorients the stalk ~75° to point toward the microtubule minus-end. To determine which of the two heads binds to tubulin in each nucleotide state, we employed specific Nanogold?-labeling of Vik1. The resulting maps confirmed that in the nucleotide-free, ATP and ADP+Pi states, Kar3 maintains contact with the microtubule surface, while Vik1 extends away from the microtubule and tracks with the coiled-coil as it rotates towards the microtubule minus-end. While many previous investigations have focused on the mechanisms of homodimeric kinesins, this work presents the first comprehensive study of the powerstroke of a heterodimeric kinesin. The stalk rotation shown here for Kar3Vik1 is highly reminiscent of that reported for the homodimeric kinesin-14 Ncd, emphasizing the conservation of a mechanism for minus-end directed motility.

References

[1]  Meluh PB, Rose MD (1990) KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60: 1029–1041.
[2]  Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M (1999) Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol 144: 1219–1233.
[3]  Page BD, Snyder M (1992) CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev 6: 1414–1429.
[4]  Page BD, Satterwhite LL, Rose MD, Snyder M (1994) Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein. J Cell Biol 124: 507–519.
[5]  Allingham JS, Sproul LR, Rayment I, Gilbert SP (2007) Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128: 1161–1172.
[6]  Rank KC, Chen JC, Cope J, Porche K, Hoenger A, et al. (2012) Kar3Vik1, a member of the Kinesin-14 superfamily, shows a novel kinesin microtubule binding patter. J Cell Biol 197: 957–970.
[7]  McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63: 1159–1165.
[8]  Yun M, Bronner CE, Park CG, Cha SS, Park HW, et al. (2003) Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd. EMBO J 22: 5382–5389.
[9]  Heuston E, Bronner CE, Kull FJ, Endow SA (2010) A kinesin motor in a force-producing conformation. BMC Struct Biol 10: 19.
[10]  deCastro MJ, Ho CH, Stewart RJ (1999) Motility of dimeric ncd on a metal-chelating surfactant: evidence that ncd is not processive. Biochemistry 38: 5076–5081.
[11]  Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342: 154–158.
[12]  Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348: 348–352.
[13]  Cope J, Gilbert S, Rayment I, Mastronarde D, Hoenger A (2010) Cryo-electron tomography of microtubule-kinesin motor complexes. J Struct Biol 170: 257–265.
[14]  Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr Biol 15: 1420–1427.
[15]  Kikkawa M, Ishikawa T, Wakabayashi T, Hirokawa N (1995) Three-dimensional structure of the kinesin head-microtubule complex. Nature 376: 274–277.
[16]  Hoenger A, Sablin EP, Vale RD, Fletterick RJ, Milligan RA (1995) Three-dimensional structure of a tubulin-motor-protein complex. Nature 376: 271–274.
[17]  Hoenger A, Thormahlen M, Diaz-Avalos R, Doerhoefer M, Goldie KN, et al. (2000) A new look at the microtubule binding patterns of dimeric kinesins. J Mol Biol 297: 1087–1103.
[18]  Hirose K, Akimaru E, Akiba T, Endow SA, Amos LA (2006) Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol Cell 23: 913–923.
[19]  Bodey AJ, Kikkawa M, Moores CA (2009) 9-Angstrom structure of a microtubule-bound mitotic motor. J Mol Biol 388: 218–224.
[20]  Skiniotis G, Surrey T, Altmann S, Gross H, Song YH, et al. (2003) Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO J 22: 1518–1528.
[21]  Krzysiak TC, Wendt T, Sproul LR, Tittmann P, Gross H, et al. (2006) A structural model for monastrol inhibition of dimeric kinesin Eg5. EMBO J 25: 2263–2273.
[22]  Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2: 41–54.
[23]  Hizlan D, Mishima M, Tittmann P, Gross H, Glotzer M, et al. (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153: 73–84.
[24]  Sosa H, Dias DP, Hoenger A, Whittaker M, Wilson-Kubalek E, et al. (1997) A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90: 217–224.
[25]  Hoenger A, Doerhoefer M, Woehlke G, Tittmann P, Gross H, et al. (2000) Surface topography of microtubule walls decorated with monomeric and dimeric kinesin constructs. Biol Chem 381: 1001–1011.
[26]  Muto E, Sakai H, Kaseda K (2005) Long-range cooperative binding of kinesin to a microtubule in the presence of ATP. J Cell Biol 168: 691–696.
[27]  Wendt TG, Volkmann N, Skiniotis G, Goldie KN, Muller J, et al. (2002) Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. EMBO J 21: 5969–5978.
[28]  Wittinghofer A (1997) Signaling mechanistics: aluminum fluoride for molecule of the year. Curr biol 7: R682–685.
[29]  Rice S, Lin AW, Safer D, Hart CL, Naber N, et al. (1999) A structural change in the kinesin motor protein that drives motility. Nature 402: 778–784.
[30]  Asenjo AB, Krohn N, Sosa H (2003) Configuration of the two kinesin motor domains during ATP hydrolysis. Nat Struct Biol 10: 836–842.
[31]  Endres NF, Yoshioka C, Milligan RA, Vale RD (2006) A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439: 875–878.
[32]  Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, et al. (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34: 8960–8972.
[33]  Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313: 1045–1057.
[34]  Song H, Endow SA (1998) Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature 396: 587–590.
[35]  Endow SA, Higuchi H (2000) A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406: 913–916.
[36]  Hoyt MA, He L, Totis L, Saunders WS (1993) Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135: 35–44.
[37]  Sablin EP, Case RB, Dai SC, Hart CL, Ruby A, et al. (1998) Direction determination in the minus-end-directed kinesin motor ncd. Nature 395: 813–816.
[38]  Sablin EP, Kull FJ, Cooke R, Vale RD, Fletterick RJ (1996) Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380: 555–559.
[39]  Gulick AM, Song H, Endow SA, Rayment I (1998) X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution. Biochemistry 37: 1769–1776.
[40]  Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116: 71–76.
[41]  Whittaker M, Carragher BO, Milligan RA (1995) PHOELIX: a package for semi-automated helical reconstruction. Ultramicroscopy 58: 245–259.
[42]  Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133