Disrupting maternal circadian rhythms through exposure to chronic phase shifts of the photoperiod has lifelong consequences for the metabolic homeostasis of the fetus, such that offspring develop increased adiposity, hyperinsulinaemia and poor glucose and insulin tolerance. In an attempt to determine the mechanisms by which these poor metabolic outcomes arise, we investigated the impact of chronic phase shifts (CPS) on maternal and fetal hormonal, metabolic and circadian rhythms. We assessed weight gain and food consumption of dams exposed to either CPS or control lighting conditions throughout gestation. At day 20, dams were assessed for plasma hormone and metabolite concentrations and glucose and insulin tolerance. Additionally, the expression of a range of circadian and metabolic genes was assessed in maternal, placental and fetal tissue. Control and CPS dams consumed the same amount of food, yet CPS dams gained 70% less weight during the first week of gestation. At day 20, CPS dams had reduced retroperitoneal fat pad weight (?15%), and time-of-day dependent decreases in liver weight, whereas fetal and placental weight was not affected. Melatonin secretion was not altered, yet the timing of corticosterone, leptin, glucose, insulin, free fatty acids, triglycerides and cholesterol concentrations were profoundly disrupted. The expression of gluconeogenic and circadian clock genes in maternal and fetal liver became either arrhythmic or were in antiphase to the controls. These results demonstrate that disruptions of the photoperiod can severely disrupt normal circadian profiles of plasma hormones and metabolites, as well as gene expression in maternal and fetal tissues. Disruptions in the timing of food consumption and the downstream metabolic processes required to utilise that food, may lead to reduced efficiency of growth such that maternal weight gain is reduced during early embryonic development. It is these perturbations that may contribute to the programming of poor metabolic homeostasis in the offspring.
References
[1]
Entringer S, Buss C, Wadhwa PD (2010) Prenatal stress and developmental programming of human health and disease risk: concepts and integration of empirical findings. Curr Opin Endocrinol Diabetes Obes 17: 507–516.
[2]
Langley-Evans SC, McMullen S (2010) Developmental origins of adult disease. Med Princ Pract 19: 87–98.
[3]
Thompson BL, Levitt P, Stanwood GD (2009) Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 10: 303–312.
[4]
Varcoe TJ, Wight N, Voultsios A, Salkeld MD, Kennaway DJ (2011) Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS One 6: e18504.
[5]
Varcoe TJ, Kennaway DJ (2008) Activation of 5-HT2C receptors acutely induces Per1 gene expression in the rat SCN in vitro. Brain Research 1209: 19–28.
[6]
Palou M, Priego T, Sanchez J, Palou A, Pico C (2010) Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance. Nutr Metab (Lond) 7: 69.
[7]
Garcia AP, Palou M, Priego T, Sanchez J, Palou A, et al. (2010) Moderate caloric restriction during gestation results in lower arcuate nucleus NPY- and alphaMSH-neurons and impairs hypothalamic response to fed/fasting conditions in weaned rats. Diabetes Obes Metab 12: 403–413.
[8]
Fowden AL, Moore T (2012) Maternal-fetal resource allocation: Co-operation and conflict. Placenta pii: S0143–4004(12)00352–9. doi: 10.1016/j.placenta.2012.09.005. [Epub ahead of print].
[9]
Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F Jr, et al. (2004) Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 287: R1071–1079.
[10]
Ashworth CJ, Hoggard N, Thomas L, Mercer JG, Wallace JM, et al. (2000) Placental leptin. Rev Reprod 5: 18–24.
[11]
Matsuda J, Yokota I, Tsuruo Y, Murakami T, Ishimura K, et al. (1999) Development changes in long-form leptin receptor expression and localization in rat brain. Endocrinology 140: 5233–5238.
[12]
Bouret SG (2010) Neurodevelopmental actions of leptin. Brain Res 1350: 2–9.
[13]
Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304: 108–110.
[14]
Kalsbeek A, Palm IF, la Fleur SE, Scheer FA, Perreau-Lenz S, et al. (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21: 458–469.
[15]
Kennaway DJ (1994) Effect of a phase advance of the light/dark cycle on pineal function and circadian running activity in individual rats. Brain Res Bull 33: 639–644.
[16]
Dumont M, Benhaberou-Brun D, Paquet J (2001) Profile of 24-h light exposure and circadian phase of melatonin secretion in night workers. J Biol Rhythms 16: 502–511.
[17]
Ferguson SA, Kennaway DJ, Baker A, Lamond N, Dawson D (2012) Sleep and circadian rhythms in mining operators: limited evidence of adaptation to night shifts. Appl Ergon 43: 695–701.
[18]
Illnerova H, Backstrom M, Saaf J, Wetterberg L, Vangbo B (1978) Melatonin in rat pineal gland and serum; rapid parallel decline after light exposure at night. Neuroscience Letters 9: 189–193.
[19]
Kennaway DJ, Rowe SA (2000) Effect of stimulation of endogenous melatonin secretion during constant light exposure on 6-sulphatoxymelatonin rhythmicity in rats. Journal of Pineal Research 28: 16–25.
[20]
Ferreira DS, Amaral FG, Mesquita CC, Barbosa AP, Lellis-Santos C, et al. (2012) Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. PLoS One 7: e38795.
[21]
Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, et al. (2012) Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 349: 20–29.
[22]
Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, et al. (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4: 163–173.
[23]
Honma K, Noe Y, Honma S, Katsuno Y, Hiroshige T (1992) Roles of paraventricular catecholamines in feeding-associated corticosterone rhythm in rats. Am J Physiol 262: E948–955.
[24]
Dallman MF, Akana SF, Scribner KA, Bradbury MJ, Walker CD, et al. (1992) Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 4: 517–526.
Hanson RW, Reshef L (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 66: 581–611.
[27]
Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR (2010) Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 42A: 141–152.
[28]
Nader N, Chrousos GP, Kino T (2009) Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J 23: 1572–1583.
[29]
Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, et al. (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9: 1608–1621.
[30]
Harris A, Seckl J (2011) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59: 279–289.
[31]
Seckl JR (1997) Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 62: 89–94.
[32]
Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR (1996) Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia 39: 1299–1305.
[33]
Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101: 2174–2181.
[34]
De Blasio MJ, Dodic M, Jefferies AJ, Moritz KM, Wintour EM, et al. (2007) Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring. Am J Physiol Endocrinol Metab 293: E75–82.
[35]
Mendez N, Abarzua-Catalan L, Vilches N, Galdames HA, Spichiger C, et al. (2012) Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One 7: e42713.
[36]
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoSBiol 5: e34.