全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Breast Feeding Increases Vasoconstriction Induced by Electrical Field Stimulation in Rat Mesenteric Artery. Role of Neuronal Nitric Oxide and ATP

DOI: 10.1371/journal.pone.0053802

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Methods Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2.–), NA and ATP releases were also determined. Results EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 μmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2.– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Conclusion Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.

References

[1]  Svennersten-Sjaunja K, Olsson K (2005) Endocrinology of milk production. Domest Anim Endocrinol 29: 241–258.
[2]  Peaker M (1976) Lactation: some cardiovascular and metabolic consequences, and the mechanisms of lactose and ion secretion into milk. Ciba Found Symp 45: 87–101.
[3]  Altura BM, Altura BT (1984) Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed Proc 43: 80–86.
[4]  Molinari C, Grossini E, Mary DA, Uberti F, Ghigo E, et al. (2007) Prolactin induces regional vasoconstriction through the beta2-adrenergic and nitric oxide mechanisms. Endocrinology 148: 4080–4090.
[5]  Loesch A (2002) Perivascular nerves and vascular endothelium: recent advances. Histol Histopathol 17: 591–597.
[6]  Sastre E, Márquez-Rodas I, Blanco-Rivero J, Balfagón G (2010) Perivascular innervation of the superior mesenteric artery: pathophysiological implications. Rev Neurol 50: 727–737.
[7]  Kawasaki H, Takasaki K, Saito A, Goto K (1988) Calcitonin gene related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature 335: 164–167.
[8]  Li YJ, Duckles SP (1992) Effect of endothelium on the actions of sympathetic and sensory nerves in the perfused rat mesentery. Eur J Pharmacol 210: 23–40.
[9]  Marín J, Balfagón G (1998) Effect of clenbuterol on non-endothelial nitric oxide release in rat mesenteric arteries and the involvement of β-adrenoceptors. Br J Pharmacol 124: 473–478.
[10]  Yu XJ, Li YJ, Deng HW (1993) The regulatory effect of bradykinin on the actions of sensory nerves in the perfused rat mesentery is mediated by nitric oxide. Eur J Pharmacol 241: 35–40.
[11]  Balfagón G, Márquez-Rodas I, Alvarez Y, Alonso MJ, Cachofeiro V, et al. (2004) Aldosterone modulates neural vasomotor response in hypertension: role of calcitonin gene-related peptide. Regul Pept 120: 253–260.
[12]  Blanco-Rivero J, Márquez-Rodas I, Sastre E, Cogolludo A, Pérez-Vizcaíno F, et al. (2011) Cirrhosis decreases vasoconstrictor response to electrical field stimulation in rat mesenteric artery: role of calcitonin gene-related peptide. Exp Physiol 96: 275–286.
[13]  Ferrer M, Marín J, Balfagón G (2000) Diabetes alters neuronal nitric oxide release from rat mesenteric arteries. Role of protein kinase C. Life Sci 66: 337–345.
[14]  del Campo L, Ferrer M, Balfagón G (2009) Hypertension alters the function of nitrergic and sensory innervation in mesenteric arteries from female rats. J Hypertens 27: 791–799.
[15]  Marín J, Ferrer M, Balfagón G (2000) Role of protein kinase C in electrical-stimulation-induced neuronal nitric oxide release in mesenteric arteries from hypertensive rats. Clin Sci (Lond) 99: 277–283.
[16]  Altemus M, Redwine LS, Leong YM, Frye CA, Porges SW, et al. (2001) Responses to laboratory psychosocial stress in postpartum women. Psychosom Med 63: 814–821.
[17]  McNamara JP, Murray CE (2001) Sympathetic nervous system activity in adipose tissues during pregnancy and lactation of the rat. J Dairy Sci 84: 1382–1389.
[18]  Mezzacappa ES, Kelsey RM, Katkin ES (2005) Breast feeding, bottle feeding, and maternal autonomic responses to stress. J Psychosom Res 58: 351–365.
[19]  Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M, et al. (1997) Nitric oxide may trigger lactation in humans. J Pediatr 131: 839–843.
[20]  Kowalska J, Jankowiak D (2009) Changes of reduction-oxidation balance in pregnant ruminants. Postepy Biochem 55: 323–328.
[21]  Nielsen KC, Owman C (1971) Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res 27: 33–42.
[22]  Blanco-Rivero J, Furieri LB, Vassallo DV, Salaíces M, Balfagón G (2011) Chronic HgCl2 treatment increases vasoconstriction induced by electrical field stimulation. Role of adrenergic and nitrergic innervation. Clin Sci (Lond) 121: 331–341.
[23]  Calderone V, Baragatti B, Breschi MC, Nieri P, Martinotti E (2002) Hormonal influence on the release of endothelial nitric oxide: gender-related dimorphic sensitivity of rat aorta for noradrenaline. J Pharm Pharmacol 54: 523–528.
[24]  Flinsenberg TW, van der Sterren S, van Cleef AN, Schuurman MJ, Agren P, et al. (2010) Effects of sex and estrogen on chicken ductus arteriosus reactivity. Am J Physiol Regul Integr Comp Physiol 298: 1217–1224.
[25]  Greenberg S, George WR, Kadowitz PJ, Wilson WR (1974) Androgen-induced enhancement of vascular reactivity. Can J Physiol Pharmacol 52: 14–22.
[26]  Takala J (1996) Determinants of splanchnic blood flow. Br J Anaesth 77: 50–58.
[27]  Hogarth AJ, Mackintosh AF, Mary DA (2007) The effect of gender on the sympathetic nerve hyperactivity of essential hypertension. J Hum Hypertens 21: 239–245.
[28]  Hogarth AJ, Mackintosh AF, Mary DA (2007) Gender-related differences in the sympathetic vasoconstrictor drive of normal subjects. Clin Sci (Lond) 112: 353–361.
[29]  Lambert E, Straznicky N, Eikelis N, Esler M, Dawood T, et al. (2007) Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens 25: 1411–1419.
[30]  Blanco-Rivero J, de las Heras N, Martín-Fernández B, Cachofeiro V, Lahera V, et al. (2011) Rosuvastatin restored adrenergic and nitrergic function in mesenteric arteries from obese rats. Br J Pharmacol 162: 271–285.
[31]  Sun C, Chen M, Mao J, Wang X (2001) Biphasic effects of orchidectomy on calcitonin gene-related peptide synthesis and release. Neuroreport 12: 3497–3502.
[32]  Xavier FE, Salaices M, Márquez-Rodas I, Alonso MJ, Rossoni LV, et al. (2004) Neurogenic nitric oxide release increases in mesenteric arteries from ouabain hypertensive rats. J Hypertens 22: 949–957.
[33]  Del Campo L, Blanco-Rivero J, Balfagon G (2011) Fenofibrate increases neuronal vasoconstrictor response in mesenteric arteries from diabetic rats: Role of noradrenaline, neuronal nitric oxide and calcitonin gene-related peptide. Eur J Pharmacol 666: 142–149.
[34]  Donald JA, Broughton B (2005) Nitric oxide control of lower vertebrate blood vessels by vasomotor nerves. Comp Biochem Physiol A Mol Integr Physiol 142: 188–197.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133