[1] | Fr?hlich FW (1923) über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
|
[2] | Kirschfeld K, Kammer T (1999) The Fr?hlich effect: A consequence of the interaction of visual focal attention and metacontrast. Vision Research 39: 3702–3709.
|
[3] | MacKay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181: 507–508.
|
[4] | Freyd JJ, Finke RA (1984) Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition 10: 126–132.
|
[5] | Hubbard TL (2005) Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review 12: 822–851.
|
[6] | Kerzel D (2005) Representational momentum beyond internalized physics. Current Directions in Psychological Science 14: 180–184.
|
[7] | Ternus J (1926) Experimentelle Untersuchungen über ph?nomenale Identit?t. Psychologische Forschung 7: 81–136.
|
[8] | Pantle A, Picciano L (1976) A multistable movement display: Evidence for two separate motion systems in human vision. Science 193: 500–502.
|
[9] | Petersik JT, Pantle A (1979) Factors controlling the competing sensations produced by a bistable stroboscopic motion display. Vision Research 19: 143–154.
|
[10] | Boi M, ??men H, Krummenacher J, Otto TU, Herzog MH (2009) A (fascinating) litmus test for human retino- vs. non-retinotopic processing. Journal of Vision 9(13): 5: 1–11. Available: http://www. journalofvision.org/content/9/13/5. doi:10.1167/9.13.5.
|
[11] | Boi M, ??men H, Herzog MH (2011) Motion and tilt aftereffects occur largely in retinal, not in object, coordinates in the Ternus-Pikler display. Journal of Vision 11(3): 7: 1–11. Available: http://www.journalofvision.org/content/1?1/3/7. doi:10.1167/11.3.7.
|
[12] | Boi M, Vergeer M, ??men H, Herzog MH (2011) Nonretinotopic exogenous attention. Current Biology 21: 1732–1737.
|
[13] | Kawabe T (2008) Spatiotemporal feature attribution for the perception of visual size. Journal of Vision 8(8): 7: 1–9, http://journalofvision.org/8/8/7/, doi:10.1167/8.8.7.
|
[14] | Kawabe T (2011) Nonretinotopic processing is related to postdictive size modulation in apparent motion. Attention, Perception, & Psychophysics 73: 1522–1531.
|
[15] | ??men H, Otto T, Herzog MH (2006) Perceptual grouping induces non-retinotopic feature attribution in human vision. Vision Research 46: 3234–3242.
|
[16] | Otto TU, ??men H, Herzog MH (2008) Assessing the microstructure of motion correspondences with non-retinotopic feature attribution. Journal of Vision 8(7): 16: 1–15. http://journalofvision.org/8/7/16/, doi:10.1167/8.7.16.
|
[17] | Aydin M, Herzog MH, ??men H (2011) Attention modulates spatio-temporal grouping. Vision Research 51: 435–446.
|
[18] | Kerzel D (2003a) Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.
|
[19] | Kerzel D (2003b) Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research 43: 2623–2635.
|
[20] | Grossberg S, Léveillé J, Versace M (2011) How do object reference frames and motion vector decomposition emerge in laminar cortical circuits? Attention Perception, & Psychophysics 73: 1147–1170.
|
[21] | Herzog MH, Otto TU, ??men H (2012) The fate of visible features of invisible elements. Frontiers in Psychology 3: 119 doi:10.3389/fpsyg.2012.00119.
|
[22] | Johansson G (1950) Configurations in event perception. Uppsala: Almqvist & Wiksell.
|
[23] | Johansson G (1973) Visual perception of biological motion and a model for its analysis. Perception & Psychophysics 14: 201–211.
|
[24] | Suchow JW, Alvarez GA (2011) Motion silences awareness of visual change. Current Biology 21: 140–143.
|
[25] | Suzuki S, Cavanagh P (1997) Focused attention distorts visual space: An attentional repulsion effect Journal of Experimental Psychology: Human Perception and Performance. 23: 443–464.
|
[26] | Pratt J, Arnott SR (2008) Modulating the attentional repulsion effect. Acta Psychologica 127: 137–145.
|
[27] | Yamada Y, Miura K, Kawabe T (2011) Temporal course of position shift for a peripheral target. Journal of Vision 11(6): 6: 1–12. Available: http://www.journalofvision.org/content/1?1/6/6. doi:10.1167/11.6.6.
|
[28] | Bressler DW, Whitney D (2006) Second-order motion shifts perceived position. Vision Research 46: 1120–1128.
|
[29] | Whitney D (2006) Contribution of bottom-up and top-down motion processes to perceived position. Journal of Experimental Psychology: Human Perception and Performance 32: 1380–1397.
|
[30] | Shim WM, Cavanagh P (2004) The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research 44: 2393–2401.
|
[31] | Whitney D, Cavanagh P (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience 3: 954–959.
|