全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Localizing Non-Retinotopically Moving Objects

DOI: 10.1371/journal.pone.0053815

Full-Text   Cite this paper   Add to My Lib

Abstract:

How does the brain determine the position of moving objects? It turns out to be rather complex to answer this question when we realize that the brain has to solve the motion correspondence problem in two kinds of reference frames: Retinotopic and non-retinotopic ones. We show that visual objects are mislocalized along a non-retinotopic motion direction. Observers viewed two successive movie frames each consisting of an outlined square and two target elements inside the square. In the non-retinotopic condition the elements as well as the square moved vertically while two bars also centripetally or centrifugally moved. In the retinotopic condition the vertical movement of them was removed from the stimuli. The task of the observers was to judge a relative position of the elements. Consequently, the elements were mislocalized in the direction of both retinotopic and non-retinotopic motion, although the mislocalization was significantly larger in the retinotopic than in the non-retinotopic conditions. The results suggest that non-retinotopic as well as retinotopic motion processing contributes to the determination of perceived positions of moving objects.

References

[1]  Fr?hlich FW (1923) über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
[2]  Kirschfeld K, Kammer T (1999) The Fr?hlich effect: A consequence of the interaction of visual focal attention and metacontrast. Vision Research 39: 3702–3709.
[3]  MacKay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181: 507–508.
[4]  Freyd JJ, Finke RA (1984) Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition 10: 126–132.
[5]  Hubbard TL (2005) Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review 12: 822–851.
[6]  Kerzel D (2005) Representational momentum beyond internalized physics. Current Directions in Psychological Science 14: 180–184.
[7]  Ternus J (1926) Experimentelle Untersuchungen über ph?nomenale Identit?t. Psychologische Forschung 7: 81–136.
[8]  Pantle A, Picciano L (1976) A multistable movement display: Evidence for two separate motion systems in human vision. Science 193: 500–502.
[9]  Petersik JT, Pantle A (1979) Factors controlling the competing sensations produced by a bistable stroboscopic motion display. Vision Research 19: 143–154.
[10]  Boi M, ??men H, Krummenacher J, Otto TU, Herzog MH (2009) A (fascinating) litmus test for human retino- vs. non-retinotopic processing. Journal of Vision 9(13): 5: 1–11. Available: http://www. journalofvision.org/content/9/13/5. doi:10.1167/9.13.5.
[11]  Boi M, ??men H, Herzog MH (2011) Motion and tilt aftereffects occur largely in retinal, not in object, coordinates in the Ternus-Pikler display. Journal of Vision 11(3): 7: 1–11. Available: http://www.journalofvision.org/content/1?1/3/7. doi:10.1167/11.3.7.
[12]  Boi M, Vergeer M, ??men H, Herzog MH (2011) Nonretinotopic exogenous attention. Current Biology 21: 1732–1737.
[13]  Kawabe T (2008) Spatiotemporal feature attribution for the perception of visual size. Journal of Vision 8(8): 7: 1–9, http://journalofvision.org/8/8/7/, doi:10.1167/8.8.7.
[14]  Kawabe T (2011) Nonretinotopic processing is related to postdictive size modulation in apparent motion. Attention, Perception, & Psychophysics 73: 1522–1531.
[15]  ??men H, Otto T, Herzog MH (2006) Perceptual grouping induces non-retinotopic feature attribution in human vision. Vision Research 46: 3234–3242.
[16]  Otto TU, ??men H, Herzog MH (2008) Assessing the microstructure of motion correspondences with non-retinotopic feature attribution. Journal of Vision 8(7): 16: 1–15. http://journalofvision.org/8/7/16/, doi:10.1167/8.7.16.
[17]  Aydin M, Herzog MH, ??men H (2011) Attention modulates spatio-temporal grouping. Vision Research 51: 435–446.
[18]  Kerzel D (2003a) Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.
[19]  Kerzel D (2003b) Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research 43: 2623–2635.
[20]  Grossberg S, Léveillé J, Versace M (2011) How do object reference frames and motion vector decomposition emerge in laminar cortical circuits? Attention Perception, & Psychophysics 73: 1147–1170.
[21]  Herzog MH, Otto TU, ??men H (2012) The fate of visible features of invisible elements. Frontiers in Psychology 3: 119 doi:10.3389/fpsyg.2012.00119.
[22]  Johansson G (1950) Configurations in event perception. Uppsala: Almqvist & Wiksell.
[23]  Johansson G (1973) Visual perception of biological motion and a model for its analysis. Perception & Psychophysics 14: 201–211.
[24]  Suchow JW, Alvarez GA (2011) Motion silences awareness of visual change. Current Biology 21: 140–143.
[25]  Suzuki S, Cavanagh P (1997) Focused attention distorts visual space: An attentional repulsion effect Journal of Experimental Psychology: Human Perception and Performance. 23: 443–464.
[26]  Pratt J, Arnott SR (2008) Modulating the attentional repulsion effect. Acta Psychologica 127: 137–145.
[27]  Yamada Y, Miura K, Kawabe T (2011) Temporal course of position shift for a peripheral target. Journal of Vision 11(6): 6: 1–12. Available: http://www.journalofvision.org/content/1?1/6/6. doi:10.1167/11.6.6.
[28]  Bressler DW, Whitney D (2006) Second-order motion shifts perceived position. Vision Research 46: 1120–1128.
[29]  Whitney D (2006) Contribution of bottom-up and top-down motion processes to perceived position. Journal of Experimental Psychology: Human Perception and Performance 32: 1380–1397.
[30]  Shim WM, Cavanagh P (2004) The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research 44: 2393–2401.
[31]  Whitney D, Cavanagh P (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience 3: 954–959.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133