全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

The Pan-Genome of the Animal Pathogen Corynebacterium pseudotuberculosis Reveals Differences in Genome Plasticity between the Biovar ovis and equi Strains

DOI: 10.1371/journal.pone.0053818

Full-Text   Cite this paper   Add to My Lib

Abstract:

Corynebacterium pseudotuberculosis is a facultative intracellular pathogen and the causative agent of several infectious and contagious chronic diseases, including caseous lymphadenitis, ulcerative lymphangitis, mastitis, and edematous skin disease, in a broad spectrum of hosts. In addition, Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic, and singleton analyses revealed close relationships among pathogenic corynebacteria, the clonal-like behavior of C. pseudotuberculosis and slow increases in the sizes of pan-genomes. According to extrapolations based on the pan-genomes, core genomes and singletons, the C. pseudotuberculosis biovar ovis shows a more clonal-like behavior than the C. pseudotuberculosis biovar equi. Most of the variable genes of the biovar ovis strains were acquired in a block through horizontal gene transfer and are highly conserved, whereas the biovar equi strains contain great variability, both intra- and inter-biovar, in the 16 detected pathogenicity islands (PAIs). With respect to the gene content of the PAIs, the most interesting finding is the high similarity of the pilus genes in the biovar ovis strains compared with the great variability of these genes in the biovar equi strains. Concluding, the polymerization of complete pilus structures in biovar ovis could be responsible for a remarkable ability of these strains to spread throughout host tissues and penetrate cells to live intracellularly, in contrast with the biovar equi, which rarely attacks visceral organs. Intracellularly, the biovar ovis strains are expected to have less contact with other organisms than the biovar equi strains, thereby explaining the significant clonal-like behavior of the biovar ovis strains.

References

[1]  Dorella FA, Pacheco LGC, Oliveira SC, Miyoshi A, Azevedo V (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 37: 201–218.
[2]  Lehman KB, Neumann R (1896) Atlas und grundriss der bakeriologie und lehrbuch der speziellen bakteriologischen diagnositk. 1st ed. J.F. Lehmann, Munchen.
[3]  Pascual C, Lawson PA, Farrow JA, Gimenez MN, Collins MD (1995) Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int J Syst Bacteriol 45: 724–728.
[4]  Cerde?o-Tárraga AM, Efstratiou A, Dover LG, Holden MTG, Pallen M, et al. (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31: 6516–6523.
[5]  Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, et al. (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187: 4671–4682.
[6]  Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, et al. (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104: 5–25.
[7]  Jones D, Collins MD (1986) Irregular, nonsporing gram-positive rods, section 15. pages 1261–1579 in bergey’s manual of systematic bacteriology. Williams & Wilkins, Co., Baltimore, MD.
[8]  Buck GA, Cross RE, Wong TP, Loera J, Groman N (1985) DNA relationships among some tox-bearing corynebacteriophages. Infect Immun 49: 679–684.
[9]  Groman N, Schiller J, Russell J (1984) Corynebacterium ulcerans and Corynebacterium pseudotuberculosis responses to DNA probes derived from corynephage beta and Corynebacterium diphtheriae. Infect Immun 45: 511–517.
[10]  Wong TP, Groman N (1984) Production of diphtheria toxin by selected isolates of Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Infect Immun 43: 1114–1116.
[11]  Muckle CA, Gyles CL (1982) Characterization of strains of Corynebacterium pseudotuberculosis. Can J Comp Med 46: 206–208.
[12]  Biberstein EL, Knight HD, Jang S (1971) Two biotypes of Corynebacterium pseudotuberculosis. Vet Rec 89: 691–692.
[13]  Ayers JL (1977) Caseous lymphadenitis in goat and sheep: Review of diagnosis, pathogenesis, and immunity. JAVMA n. 171: 1251–1254.
[14]  Ben Sa?d MS, Ben Maitigue H, Benzarti M, Messadi L, Rejeb A, et al. (2002) Epidemiological and clinical studies of ovine caseous lymphadenitis. Arch Inst Pasteur Tunis 79: 51–57.
[15]  Arsenault J, Girard C, Dubreuil P, Daignault D, Galarneau JR, et al. (2003) Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. Prev Vet Med 59: 67–81.
[16]  Binns SH, Bailey M, Green LE (2002) Postal survey of ovine caseous lymphadenitis in the United Kingdom between 1990 and 1999. Vet Rec 150: 263–268.
[17]  Connor KM, Quirie MM, Baird G, Donachie W (2000) Characterization of United Kingdom isolates of Corynebacterium pseudotuberculosis using pulsed-field gel electrophoresis. J Clin Microbiol 38: 2633–2637.
[18]  Paton MW, Walker SB, Rose IR, Watt GF (2003) Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. Aust Vet J 81: 91–95.
[19]  Hodgson AL, Carter K, Tachedjian M, Krywult J, Corner LA, et al. (1999) Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D. Vaccine. 17: 802–808.
[20]  Pugh DG (2002) Caseous Lymphadenitis. In: Sheep & Goat Medicine Saunders 207–208.
[21]  Radostits OM, Gay CC, Blood DC, Hinchcliff KW (2002) Clínica veterinária. um tratado de doen?as dos bovinos, ovinos, suínos, caprinos e eqüinos. Ed. Guanabara, Koogan, 9a edi??o.
[22]  Augustine JL, Renshaw HW (1986) Survival of Corynebacterium pseudotuberculosis in axenic purulent exudate on common barnyard fomites. Am J Vet Res 47: 713–715.
[23]  Yeruham I, Friedman S, Perl S, Elad D, Berkovich Y, et al. (2004) A herd level analysis of a Corynebacterium pseudotuberculosis outbreak in a dairy cattle herd. Vet Dermatol 15: 315–320.
[24]  Yeruham I, Elad D, Friedman S, Perl S (2003) Corynebacterium pseudotuberculosis infection in Israeli dairy cattle. Epidemiol Infect 131: 947–955.
[25]  Collett MG, Bath GF, Cameron CM (1994) Corynebacterium pseudotuberculosis infections. In: Infections diseases of livestock with special reference to Southern Africa. Oxford University Press 2: 1387–1395.
[26]  Dorella FA, Pacheco LG, Seyffert N, Portela RW, Meyer R, et al. (2009) Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development. Expert Rev Vaccines 8: 205–213.
[27]  Williamson LH (2001) Caseous lymphadenitis in small ruminants. Vet. Clin. North Am. Food Anim. Pract 17: 359–371.
[28]  Liu DTL, Chan W, Fan DSP, Lam DSC (2005) An infected hydrogel buckle with Corynebacterium pseudotuberculosis. Br J Ophthalmol 89: 245–246.
[29]  Mills AE, Mitchell RD, Lim EK (1997) Corynebacterium pseudotuberculosis is a cause of human necrotising granulomatous lymphadenitis. Pathology 29: 231–233.
[30]  Peel MM, Palmer GG, Stacpoole AM, Kerr TG (1997) Human lymphadenitis due to Corynebacterium pseudotuberculosis: report of ten cases from Australia and review. Clin Infect Dis 24: 185–191.
[31]  Barakat AA, Selim SA, Atef A, Saber MS, Nafie EK, et al. (1984) Two serotypes of Corynebacterium pseudotuberculosis isolated from different animal species. Revue Scientifique et Technique de l’OIE 3(1): 151–163.
[32]  Aleman M, Spier SJ, Wilson WD, Doherr M (1996) Corynebacterium pseudotuberculosis infection in horses: 538 cases (1982–1993). J Am Vet Med Assoc 209: 804–809.
[33]  Pratt SM, Spier SJ, Carroll SP, Vaughan B, Whitcomb MB, et al. (2005) Evaluation of clinical characteristics, diagnostic test results, and outcome in horses with internal infection caused by Corynebacterium pseudotuberculosis: 30 cases (1995–2003). J Am Vet Med Assoc 227: 441–448.
[34]  Braverman Y, Chizov-Ginzburg A, Saran A, Winkler M (1999) The role of houseflies (Musca domestica) in harbouring Corynebacterium pseudotuberculosis in dairy herds in Israel. Revue Scientifique et Technique de l’OIE 18 n° 3: 681–690.
[35]  Addo P (1983) Role of the common house fly (Musca domestica) in the spread of ulcerative lymphangitis. Vet Rec 113(21): 496–497.
[36]  Selim SA (2001) Oedematous skin disease of buffalo in Egypt. J Vet Med B Infect Dis Vet Public Health 48: 241–258.
[37]  Yeruham I, Braverman Y, Shpigel NY, Chizov-Ginzburg A, Saran A, et al. (1996) Mastitis in dairy cattle caused by Corynebacterium pseudotuberculosis and the feasibility of transmission by houseflies. I. Vet Q 18: 87–89.
[38]  Spier S (2008) Corynebacterium pseudotuberculosis infection in horses: An emerging disease associated with climate change? Equine Veterinary Education 20: 37–39.
[39]  McKean S, Davies J, Moore R (2005) Identification of macrophage induced genes of Corynebacterium pseudotuberculosis by differential fluorescence induction. Microbes Infect 7: 1352–1363.
[40]  McKean SC, Davies JK, Moore RJ (2007) Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology 153: 2203–2211.
[41]  Schumann W (2007) Thermosensors in eubacteria: role and evolution. J Biosci 32: 549–557.
[42]  Billington SJ, Esmay PA, Songer JG, Jost BH (2002) Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS Microbiol : Lett. 208, 41–45.
[43]  Ruiz JC, D’Afonseca V, Silva A, Ali A, Pinto AC, et al. (2011) Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 6: e18551.
[44]  Alves FSF, Olander H (1999) Uso de vacina toxóide no controle da linfadenite caseosa em caprinos. Veterinária Notícias, Uberlandia n° 5: 69–75.
[45]  Songer JG, Libby SJ, Iandolo JJ, Cuevas WA (1990) Cloning and expression of the phospholipase D gene from Corynebacterium pseudotuberculosis in Escherichia coli. Infect Immun 58: 131–136.
[46]  Trost E, Ott L, Schneider J, Schr?der J, Jaenicke S, et al. (2010) The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 11: 728.
[47]  Yanagawa R, Honda E (1976) Presence of pili in species of human and animal parasites and pathogens of the genus Corynebacterium. Infect Immun 13: 1293–1295.
[48]  Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, et al. (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78: 216–224.
[49]  Pethick FE, Lainson AF, Yaga R, Flockhart A, Smith DGE, et al. (2012) Complete Genome Sequences of Corynebacterium pseudotuberculosis Strains 3/99–5 and 42/02-A, Isolated from Sheep in Scotland and Australia, Respectively. J Bacteriol 194: 4736–4737.
[50]  Cerdeira LT, Pinto AC, Schneider MPC, de Almeida SS, dos Santos AR, et al. (2011) Whole-genome sequence of Corynebacterium pseudotuberculosis PAT10 strain isolated from sheep in Patagonia, Argentina. J Bacteriol 193: 6420–6421.
[51]  Lopes T, Silva A, Thiago R, Carneiro A, Dorella FA, et al. (2012) Complete Genome Sequence of Corynebacterium pseudotuberculosis Strain Cp267, Isolated from a Llama. J Bacteriol 194: 3567–3568.
[52]  Silva A, Schneider MPC, Cerdeira L, Barbosa MS, Ramos RTJ, et al. (2011) Complete genome sequence of Corynebacterium pseudotuberculosis I19, a strain isolated from a cow in Israel with bovine mastitis. J Bacteriol 193: 323–324.
[53]  Cerdeira LT, Schneider MPC, Pinto AC, de Almeida SS, dos Santos AR, et al. (2011) Complete genome sequence of Corynebacterium pseudotuberculosis strain CIP 52.97, isolated from a horse in Kenya. J Bacteriol 193: 7025–7026.
[54]  Ramos RTJ, Silva A, Carneiro AR, Pinto AC, Soares SDC, et al. (2012) Genome Sequence of the Corynebacterium pseudotuberculosis Cp316 Strain, Isolated from the Abscess of a Californian Horse. J Bacteriol 194: 6620–6621.
[55]  Ramos RTJ, Carneiro AR, Soares SC, Santos AR, Almeida SS, et al.. (2013) Tips and tricks for the assembly a Corynebacterium pseudotuberculosis genome using a semiconductor sequencer. Microbial Biotechnology in press.
[56]  Soares SC, Trost E, Ramos RTJ, Carneiro AR, Santos AR, et al.. (2012) Genome sequence of Corynebacterium pseudotuberculosis biovar equi strain 258 and prediction of antigenic targets to improve biotechnological vaccine production. J Biotechnol in press.
[57]  Pethick FE, Lainson AF, Yaga R, Flockhart A, Smith DGE, et al. (2012) Complete Genome Sequence of Corynebacterium pseudotuberculosis Strain 1/06-A, Isolated from a Horse in North America. J Bacteriol 194: 4476.
[58]  Hassan SS, Schneider MPC, Ramos RTJ, Carneiro AR, Ranieri A, et al. (2012) Whole-Genome Sequence of Corynebacterium pseudotuberculosis Strain Cp162, Isolated from Camel. J Bacteriol 194: 5718–5719.
[59]  Silva A, Ramos RTJ, Ribeiro Carneiro A, Cybelle Pinto A, de Castro Soares S, et al. (2012) Complete Genome Sequence of Corynebacterium pseudotuberculosis Cp31, Isolated from an Egyptian Buffalo. J Bacteriol 194: 6663–6664.
[60]  Agren J, Sundstr?m A, H?fstr?m T, Segerman B (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One 7: e39107.
[61]  Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.
[62]  Kloepper TH, Huson DH (2008) Drawing explicit phylogenetic networks and their integration into SplitsTree. BMC Evol Biol 8: 22.
[63]  Blom J, Albaum SP, Doppmeier D, Pühler A, Vorh?lter F, et al. (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10: 154.
[64]  Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, et al. (2003) GenDB–an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31: 2187–2195.
[65]  Lerat E, Daubin V, Moran NA (2003) From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol 1: E19.
[66]  Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome. Proc Natl Acad Sci U S A 102: 13950–13955.
[67]  Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11: 472–477.
[68]  Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 13: 202.
[69]  Soares SC, Abreu VAC, Ramos RTJ, Cerdeira L, Silva A, et al. (2012) PIPS: pathogenicity island prediction software. PLoS One 7: e30848.
[70]  Carver TJ, Rutherford KM, Berriman M, Rajandream M, Barrell BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423.
[71]  Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, et al. (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13: 1572–1579.
[72]  Schr?der J, Maus I, Meyer K, W?rdemann S, Blom J, et al. (2012) Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient. BMC Genomics 13: 141.
[73]  Tauch A, Trost E, Tilker A, Ludewig U, Schneiker S, et al. (2008) The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol 136: 11–21.
[74]  Schr?der J, Maus I, Trost E, Tauch A (2011) Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 12: 545.
[75]  Trost E, G?tker S, Schneider J, Schneiker-Bekel S, Szczepanowski R, et al. (2010) Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion. BMC Genomics 11: 91.
[76]  Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17: 14–56.
[77]  Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, et al. (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95: 3134–3139.
[78]  Oram DM, Avdalovic A, Holmes RK (2002) Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol 184: 5723–5732.
[79]  Nakao H, Pruckler JM, Mazurova IK, Narvskaia OV, Glushkevich T, et al. (1996) Heterogeneity of diphtheria toxin gene, tox, and its regulatory element, dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and Ukraine. J Clin Microbiol 34: 1711–1716.
[80]  Hadfield TL, McEvoy P, Polotsky Y, Tzinserling VA, Yakovlev AA (2000) The pathology of diphtheria. J Infect Dis (Suppl 1): S116–20.
[81]  Murphy JR (2011) Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process. Toxins (Basel) 3: 294–308.
[82]  Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181 Suppl 1S156–67.
[83]  Sekizuka T, Yamamoto A, Komiya T, Kenri T, Takeuchi F, et al. (2012) Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage. BMC Microbiol 12: 72.
[84]  Sing A, Bierschenk S, Heesemann J (2005) Classical diphtheria caused by Corynebacterium ulcerans in Germany: amino acid sequence differences between diphtheria toxins from Corynebacterium diphtheriae and C. ulcerans. Clin Infect Dis 40: 325–326.
[85]  Maximescu P, Opri?an A, Pop A, Potorac E (1974) Further studies on Corynebacterium species capable of producing diphtheria toxin (C. diphtheriae, C. ulcerans, C. ovis). J Gen Microbiol 82: 49–56.
[86]  LeMieux J, Hava DL, Basset A, Camilli A (2006) RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. Infect Immun 74: 2453–2456.
[87]  Trost E, Blom J, Soares SDC, Huang I, Al-Dilaimi A, et al. (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194: 3199–3215.
[88]  Khamis A, Raoult D, La Scola B (2004) rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 42: 3925–3931.
[89]  Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P, et al. (2008) Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. J Biotechnol 136: 22–30.
[90]  Collins MD, Falsen E, Akervall E, Sj?den B, Alvarez A (1998) Corynebacterium kroppenstedtii sp. nov., a novel Corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol 48 Pt 4: 1449–1454.
[91]  Paviour S, Musaad S, Roberts S, Taylor G, Taylor S, et al. (2002) Corynebacterium species isolated from patients with mastitis. Clin Infect Dis 35: 1434–1440.
[92]  Bolt F (2009) The population structure of the Corynebacterium diphtheriae group. University of Warwick. PhD thesis. Available: http://wrap.warwick.ac.uk/1759/. Accessed 26 November 2012.
[93]  Songer JG, Beckenbach K, Marshall MM, Olson GB, Kelley L (1988) Biochemical and genetic characterization of Corynebacterium pseudotuberculosis. Am J Vet Res 49: 223–226.
[94]  Sutherland SS, Hart RA, Buller NB (1993) Ribotype analysis of Corynebacterium pseudotuberculosis isolates from sheep and goats. Aust Vet J 70: 454–456.
[95]  Halachev MR, Loman NJ, Pallen MJ (2011) Calculating orthologs in bacteria and Archaea: a divide and conquer approach. PLoS One 6: e28388.
[96]  Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15: 589–594.
[97]  Kittichotirat W, Bumgarner RE, Asikainen S, Chen C (2011) Identification of the pangenome and its components in 14 distinct Aggregatibacter actinomycetemcomitans strains by comparative genomic analysis. PLoS One 6: e22420.
[98]  Hsiao WWL, Ung K, Aeschliman D, Bryan J, Finlay BB, et al. (2005) Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet 1: e62.
[99]  Ton-That H, Schneewind O (2004) Assembly of pili in Gram-positive bacteria. Trends Microbiol 12: 228–234.
[100]  Ton-That H, Marraffini LA, Schneewind O (2004) Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53: 251–261.
[101]  Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16: 33–40.
[102]  Ton-That H, Marraffini LA, Schneewind O (2004) Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694: 269–278.
[103]  Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50: 1429–1438.
[104]  Hirata Jr R, Pereira GA, Filardy AA, Gomes DLR, Damasco PV, et al. (2008) Potential pathogenic role of aggregative-adhering Corynebacterium diphtheriae of different clonal groups in endocarditis. Braz J Med Biol Res 41: 986–991.
[105]  Hirata RJ, Souza SMS, Rocha-de-Souza CM, Andrade AFB, Monteiro-Leal LH, et al. (2004) Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog 36: 125–130.
[106]  Mandlik A, Swierczynski A, Das A, Ton-That H (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64: 111–124.
[107]  Zasada AA, Formińska K, Rzeczkowska M (2012) Occurence of pili genes in Corynebacterium diphtheriae strains. Med Dosw Mikrobiol 64(1): 19–27.
[108]  Hall K, McCluskey BJ, Cunningham W (2001) Corynebacterium pseudotuberculosis infections (Pigeon Fever) in horses in Western Colorado: An epidemiological investigation. Journal of Equine Veterinary Science 21(6): 284–286.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133