全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor

DOI: 10.1371/journal.pone.0052382

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a light-switchable gene expression system for both inducible and switchable control of gene expression at a single cell level in Escherichia coli using a previously constructed light-sensing system. The λ cI repressor gene with an LVA degradation tag was expressed under the control of the ompC promoter on the chromosome. The green fluorescent protein (GFP) gene fused to a λ repressor-repressible promoter was used as a reporter. This light-switchable system allows rapid and reversible induction or repression of expression of the target gene at any desired time. This system also ensures homogenous expression across the entire cell population. We also report the design of a miniaturized photobioreactor to be used in combination with the light-switchable gene expression system. The miniaturized photobioreactor helps to reduce unintended induction of the light receptor due to environmental disturbances and allows precise control over the duration of induction. This system would be a good tool for switchable, homogenous, strong, and highly regulatable expression of target genes over a wide range of induction times. Hence, it could be applied to study gene function, optimize metabolic pathways, and control biological systems both spatially and temporally.

References

[1]  Drepper T, Krauss U, Berstenhorst SMZ, Pietruszka J, Jaeger KE (2011) Lights on and action! Controlling microbial gene expression by light. Appl Microbiol Biotechnol 90: 23–40.
[2]  Cho H-S, Seo SW, Kim YM, Jung GY, Park JM (2012) Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli. Biotechnol Bioengin 109: 2612–2619.
[3]  Zhoua L, Niuc D-D, Tiana K-M, Chena X-Z, Priorc BA, et al. (2012) Genetically switched D-lactate production in Escherichia coli. Metab Engin 14: 560–568.
[4]  Valdez-Cruz NA, Caspeta L, Perez NO, Ramirez OT, Trujillo-Roldan MA (2010) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact 9: 18.
[5]  Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, et al. (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64: 2240–2246.
[6]  Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, et al. (2009) A synthetic genetic edge detection program. Cell 137: 1272–1281.
[7]  Menart V, Jevsevar S, Vilar M, Trobis A, Pavko A (2003) Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR, PL promoters from phage lambda. Biotechnol Bioengin 83: 181–190.
[8]  Rinas U (1996) Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduction of basic fibroblast growth factor by recombinant Escherichia coli. Biotechnol Prog 12: 196–200.
[9]  Lee SK, Keasling JD (2006) Propionate-regulated high-yield protein production in Escherichia coli. Biotechnol Bioengin 93: 912–918.
[10]  Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67: 289–298.
[11]  Young DD, Deiters A (2007) Photochemical activation of protein expression in bacterial cells. Angew Chem Int Ed 46: 4290–4292.
[12]  Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Moglich A (2012) From dusk till dawn: One-plasmid systems for light-regulated gene expression. J Mol Biol 416: 534–542.
[13]  Brieke C, Rohrbach F, Gottschalk A, Mayer Gn, Heckel A (2012) Light-controlled tools. Angew Chem Int Ed 51: 8446–8476.
[14]  Chou CJ, Young DD, Deiters A (2010) Photocaged T7 RNA polymerase for the light activation of transcription and gene function in pro- and eukaryotic cells. Chembiochem 11: 972–977.
[15]  Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20: 1041–1044.
[16]  Tabor JJ, Levskaya A, Voigt CA (2011) Multichromatic control of gene expression in Escherichia coli. J Mol Biol 405: 315–324.
[17]  Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, et al. (2005) Synthetic biology: Engineering Escherichia coli to see light. Nature 438: 441–442.
[18]  Miller WG, Leveau JHJ, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13: 1243–1250.
[19]  Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645.
[20]  Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379: 109–115.
[21]  Joseph S, David WR (2001) Molecular cloning: A laboratory manual: Cold Spring Harbor Laboratory Press.
[22]  Gambetta GA, Lagarias JC (2001) Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci USA 98: 10566–10571.
[23]  Na D, Lee D (2010) RBSDesigner: Software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26: 2633–2634.
[24]  Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14: 315–319.
[25]  Lee SK, Keasling JD (2005) A propionate-inducible expression system for enteric bacteria. Appl Environ Microbiol 71: 6856–6862.
[26]  Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD (2001) Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology-Sgm 147: 3241–3247.
[27]  Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462.
[28]  Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9–14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133