全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

The Transcriptional and Gene Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk

DOI: 10.1371/journal.pone.0053085

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study we examine the changes in the expression of genes of Lactococcus lactis subspecies cremoris MG1363 during growth in milk. To reveal which specific classes of genes (pathways, operons, regulons, COGs) are important, we performed a transcriptome time series experiment. Global analysis of gene expression over time showed that L. lactis adapted quickly to the environmental changes. Using upstream sequences of genes with correlated gene expression profiles, we uncovered a substantial number of putative DNA binding motifs that may be relevant for L. lactis fermentative growth in milk. All available novel and literature-derived data were integrated into network reconstruction building blocks, which were used to reconstruct and visualize the L. lactis gene regulatory network. This network enables easy mining in the chrono-transcriptomics data. A freely available website at http://milkts.molgenrug.nl gives full access to all transcriptome data, to the reconstructed network and to the individual network building blocks.

References

[1]  Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, et al. (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 3256.
[2]  Klaenhammer T R, Azcarate-Peril MA, Altermann E, Barrangou R (2007) Influence of the dairy environment on gene expression and substrate utilization in lactic acid bacteria. J Nutr 137: 748S.
[3]  Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15: 546–553.
[4]  Kilstrup M, Martinussen J (1998) A transcriptional activator homologous to the bacillus subtilis PurR repressor is required for expression of purine biosynthetic genes in Lactococcus lactis. J Bacteriol 180: 3907–3916.
[5]  Kilstrup M, Hammer K, Jensen PR, Martinussen J (2005) Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29: 555–590.
[6]  Fernández M, Zú?iga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32: 155–183.
[7]  Dressaire C, Redon E, Gitton C, Loubiere P, Monnet V, et al. (2011) Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 10: S18.
[8]  Doeven MK, Kok J, Poolman B (2005) Specificity and selectivity determinants of peptide transport in lactococcus lactis and other microorganisms. Mol Microbiol 57: 640–649.
[9]  Kok J, Buist G, Zomer AL, Hijum SAFT, Kuipers OP (2005) Comparative and functional genomics of lactococci. FEMS Microbiol Rev 29: 411–433.
[10]  van Hijum SAFT, Medema MH, Kuipers OP (2009) Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiology and Molecular Biology Reviews 73: 481.
[11]  Zomer AL, Buist G, Larsen R, Kok J, Kuipers OP (2006) Time-resolved determination of the CcpA regulon of Lactococcus lactis spp. cremoris MG1363. J Bacteriol 189(4): 1366–81.
[12]  den Hengst CD, van Hijum SAFT, Geurts JMW, Nauta A, Kok J, et al. (2005) The Lactococcus lactis CodY regulon. J Biol Chem 280: 34332.
[13]  Guedon E, Sperandio B, Pons N, Ehrlich SD, Renault P (2005) Overall control of nitrogen metabolism in lactococcus lactis by CodY and possible models for CodY regulation in firmicutes. Microbiology 151: 3895–3909.
[14]  Cretenet M, Laroute V, Ulve V, Jeanson S, Nouaille S, et al. (2011) Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses. Appl Environ Microbiol 77: 247–257.
[15]  van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, et al. (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82: 187–216.
[16]  Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, et al. (2006) Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences 103: 15611.
[17]  Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res 37: W202.
[18]  Carlson JM, Chakravarty A, DeZiel CE, Gross RH (2007) SCOPE: A web server for practical de novo motif discovery. Nucleic Acids Res 35 (Web Server issue): W259–64.
[19]  Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154: 1.
[20]  van Hijum SAFT, de Jong A, Baerends RJ, Karsens HA, Kramer NE, et al. (2005) A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data. BMC Genomics 6: 77.
[21]  Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, et al. (2009) NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Res 37: D885–90.
[22]  Van Hijum SAFT, de la Nava JG, Trelles O, Kok J, Kuipers OP (2003) MicroPreP: A cDNA microarray data pre-processing framework. Appl Bioinformatics 2: 241–244.
[23]  Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, et al. (2002) BioArray software environment (BASE): A platform for comprehensive management and analysis of microarray data. Genome Biol 3: 1–0003.6.
[24]  Baerends R, Smits W, De Jong A, Hamoen L, Kok J, et al. (2004) Genome2D: A visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biol 5: R37.
[25]  Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al. (2006) TM4 microarray software suite. Meth Enzymol 411: 134–193.
[26]  Ahdesmaki M, Lahdesmaki H, Pearson R, Huttunen H, Yli-Harja O (2005) Robust detection of periodic time series measured from biological systems. BMC Bioinformatics 6: 117.
[27]  Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1: 37.
[28]  Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5: 299–314.
[29]  Ahdesmaki M, Lahdesmaki H, Gracey A, Shmulevich L, Yli-Harja O (2007) Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinformatics 8: 233.
[30]  Blom EJ, van Hijum SAFT, Hofstede KJ, Silvis R, Roerdink JB, et al. (2008) DISCLOSE: DISsection of CLusters obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites. BMC Bioinformatics 9: 535.
[31]  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498.
[32]  Brouwer RWW, Kuipers OP, Hijum SAFT (2008) The relative value of operon predictions. Briefings in Bioinformatics 9: 367–375.
[33]  Kingsford C, Ayanbule K, Salzberg S (2007) Rapid accurate computational discovery of rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8: R22.
[34]  de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J (2012) PePPER: A webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13: 299.
[35]  Picard F, Dressaire C, Girbal L, Cocaign-Bousquet M (2009) Examination of post-transcriptional regulations in prokaryotes by integrative biology. Comptes Rendus Biologies 332: 958–973.
[36]  Notebaart RA, van Enckevort FH, Francke C, Siezen RJ, Teusink B (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7: 296.
[37]  Singhal M, Domico K (2007) CABIN: Collective analysis of biological interaction networks. Computational Biology and Chemistry 31: 222–225.
[38]  Juillard V, Le Bars D, Kunji ER, Konings WN, Gripon JC, et al. (1995) Oligopeptides are the main source of nitrogen for lactococcus lactis during growth in milk. Appl Environ Microbiol 61: 3024–3030.
[39]  Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2006) Database resources of the national center for biotechnology information. Nucleic Acids Res 37 (Database issue): D5–15.
[40]  Foucaud-Scheunemann C, Poquet I (2003) HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 224: 53–59.
[41]  Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, et al. (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 3256.
[42]  Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in bacillus subtilis and other bacteria. Cell 113: 577–586.
[43]  Beyer NH, Roepstorff P, Hammer K, Kilstrup M (2003) Proteome analysis of the purine stimulon from lactococcus lactis. Proteomics 3: 786–797.
[44]  Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, et al. (2011) Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 4: 383–402.
[45]  Sperandio B, Polard P, Ehrlich DS, Renault P, Guedon E (2005) Sulfur amino acid metabolism and its control in lactococcus lactis IL1403. J Bacteriol 187: 3762.
[46]  Jendresen CB, Martinussen J, Kilstrup M (2012) The PurR regulon in lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery. Microbiology 158: 2026–2038.
[47]  Kilstrup M, Martinussen J (1998) A transcriptional activator homologous to the Bacillus subtilis PurR repressor is required for expression of purine biosynthetic genes in lactococcus lactis. J Bacteriol 180: 3907.
[48]  Martirani L, Raniello R, Naclerio G, Ricca E, Felice M (2001) Identification of the DNA-binding protein HrcA of streptococcus thermophilus. FEMS Microbiol Lett 198: 177–182.
[49]  Larsen R, Kok J, Kuipers OP (2005) Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis. J Biol Chem 280: 19319.
[50]  Bonner ER, D'Elia JN, Billips BK, Switzer RL (2001) Molecular recognition of pyr mRNA by the bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res 29: 4851.
[51]  Scott C, Guest JR, Green J (2000) Characterization of the Lactococcus lactis transcription factor FlpA and demonstration of an in vitro switch. Mol Microbiol 35: 1383–1393.
[52]  Zomer AL, Buist G, Larsen R, Kok J, Kuipers OP (2007) Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 1366–1381.
[53]  Kohl M, Wiese S, Warscheid B (2011) Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol 696: 291–303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133