Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health Ministry to focus resources more effectively.
References
[1]
OPS (1990) Las condiciones de Salud en las Américas. Organización Panamericana de la Salud, Publicación Científica 524: 1–503.
[2]
Avilés G, Rangeón G, Vorndam V, Briones A, Baroni P, et al. (1999) Dengue Reemergence in Argentina. Emerg Infect Dis 5: 575–578.
[3]
Rondan Due?as JC, Albrieu Llinás G, Panzetta-Dutari GM, Gardenal CN (2009) Two Different Routes of Colonization of Aedes aegypti in Argentina from Neighboring Countries. J Med Entomol 46: 1344–1354.
[4]
Natiello M, Ritacco V, Morales MA, Deodato B, Picollo M, et al. (2008) Indigenous Dengue Fever, Buenos Aires, Argentina. Emerg Infect Dis 14: 1498–1499.
[5]
Ministerio de Salud de la Nación (2009) Plan Nacional para prevención y control del dengue y la fiebre amarilla. Available: http://www.msal.gov.ar/dengue/descargas/?plan_nacional%20_prevencion_control_deng?ue_f_amarilla.pdf. Accessed 10 August 2009.
[6]
Rodhain F, Rosen L (1997) Mosquito Vectors and dengue virus-vector relationships. In: Gubler DJ, Kuno G, editors. Dengue and Dengue haemorrhagic fever. Wallingford: Cambridge University Press. 45–60.
[7]
Christophers SR (1960) Aedes aegypti (L.) The yellow fever mosquito. Cambridge: Cambridge University Press. 738p.
[8]
Stein M, Ludue?a-Almeida F, Willener JA, Almirón WR (2011) Classification of inmature mosquito species according to characteristics of larval habitat in the subtropical province of Chaco, Argentina. Mem Inst Oswaldo Cruz 106: 400–407.
[9]
Mangudo C, Aparicio JP, Gleiser RM (2010) Huecos de árboles como hábitat larval de Aedes aegypti en el arbolado público de la localidad de Aguaray, provincia de Salta. In: VII Jornadas Regionales sobre mosquitos editors. Posadas: FCEQYN, Universidad Nacional de Misiones. 37.
[10]
Carbajo AE, Gómez SM, Curto SI, Schweigmann NJ (2004) Variacion espacio-temporal de riesgo de transmisión de dengue en la ciudad de Buenos Aires. Medicina (Buenos Aires) 64: 231–234.
[11]
Pérez-Martínez TT, I?iguez-Rojas L, Sánchez Valdés L, Remond-Noa R (2003) Vulnerabilidad espacial al dengue. Una aplicación de los sistemas de información geográfica en el municipio Playa de ciudad de La Habana. Rev Cubana Salud Púb 29: 353–365.
[12]
Naish S, Hu W, Mengersen K, Tong S (2011) Spatial Patterns of Barmah Forest Virus disease in Queensland, Australia. PLoS ONE 6(10): e25688 doi: 10.1371/journal.pone.0025688.
[13]
Focks D, Brenner RJ, Chadee DD, Trosper JH (1999) The Use of Spatial Analysis in the Control and Risk Assessment of Vector-Borne Diseases. Am Entomol 45: 173–183.
[14]
Eisen L, Lozano-Fuentes S (2009) Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS Neglected Trop Dis 3: e411.
[15]
Getis A, Morrison AC, Gray K, Scott TW (2003) Characteristics of Spatial Patterns of the Dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69: 494–505.
[16]
Graham AJ, Atkinson PM, Danson FM (2004) Spatial analysis for epidemiology. Acta Trop 91: 219–225.
[17]
Albrecht J, ed (2007) Key concepts & Techniques in GIS. Los Angeles: Sage.
[18]
Service MW (1992) Importance of ecology in Aedes aegypti Control. Southeast Asian J Trop Med Public Health 23: 681–688.
[19]
Reiter P, Nathan MB (2001) Guidelines for assessing the efficacy of insecticidal space spray for control of the dengue vector Aedes aegypti.Available: http://whqlibdoc.who.int/hq/2001/WHO_CDS?_CPE_PVC_2001.1.pdf.Accessed 25 may 2005.
[20]
ArcView 3.2, ESRI Inc., CA, USA.
[21]
Anselin L (1995) LISA Algorithm Used in Geoda. Local indicators of spatial association-LISA. Geogr Anal 27 93–115.
[22]
Anselin L (2005) GeoDa. 0.95i ed. Urbana, USA.
[23]
Schweigmann N, Vezzani D, Vera T, Gómez S, Fernandez Campón F, et al. (1997) Infestación domiciliaria por formas inmaduras de Aedes (Stegomyia) aegypti en un foco del partido de San Martín, Prov. De Buenos Aires, Argentina. Entomología y Vectores 4 (6): 185–190.
[24]
Stein M, Oria IG, Almirón WR (2002) Main breeding-containers for Aedes aegypti and associated culicids, Argentina. Rev Saúde Publica USP 36: 627–630.
[25]
Almirón W, Asis R (2003) índices de abundancia de larvas y pupas de Aedes aegypti (Diptera: Culicidae) en la ciudad de Córdoba. Revista de la Facultad de Ciencias Médicas. UNC. 60 (1): 37–41, 2003.
[26]
Idrisi Andes (2006) Clark Labs, Clark University, MA, USA.
[27]
Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
[28]
Ryan PA, Lyons SA, Alsemgeest D, Thomas P, Kay B (2004) Spatial Statistical Analysis of Adult Mosquito (Diptera: Culicidae) Counts: An Example Using Light Trap Data, in Redland Shide, Southeastern Queensland, Australia. J Med Entomol 41: 1143–1156.
[29]
Barrera R (2011) Spatial Stability of Adult Aedes aegypti Populations. Am J Trop Med Hyg 85(6): 1087–1092.
[30]
Sciarretta A, Tikubet G, Baumg?rtner J, Girma M, Trematerra P (2010) Spatial clustering and associations of two savannah tsetse species, Glossina morsitans submorsitans and Glossina pallidipes (Diptera: Glossinidae), for guiding interventions in an adaptive cattle health management framework. Bull Entomol Res 100: 661–670.
[31]
Moore CG, Cline BL, Ruiz-Tiben E, Lee D, Romney-Joseph H, et al. (1978) Aedes aegypti in Puerto Rico: Environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 27: 1228–1231.
[32]
Tinker ME (1964) Larval habitat of Aedes aegypti (L.) in the United States. Mosq News 24: 426–432.
[33]
Marquetti M, Suárez S, Bisset J, Leyva M (2005) Reporte de hábitats utilizados por Aedes aegypti en ciudad de La Habana, Cuba. Rev Cubana Med Trop 57: 159–161.
[34]
Anasike J, Nwoke B, Okere E, Oku J, Asor I, et al. (2007) Epidemiology of tree-hole breeding mosquitoe in the tropical rainforest of Imo State, South-East Nigeria. Ann Agric Environ Med 14: 31–38.
[35]
Brooker S, Toby L, Kolaczinski K, Mohsen E, Mehboob N, et al. (2006) Spatial Epidemiology of Plasmodium vivax, Afghanistan. Emerg Infect Dis 10: 1600–1602.
[36]
King RJ, Campbell-Lendrum DH, Davies CR (2004) Predictive Geographic variation in Cutaneous Leishmaniasis, Colombia. Emerg Infect Dis 10: 598–607.