The Predisposition, Infection, Response and Organ Failure (Piro) Sepsis Classification System: Results of Hospital Mortality Using a Novel Concept and Methodological Approach
Introduction PIRO is a conceptual classification system in which a number of demographic, clinical, biological and laboratory variables are used to stratify patients with sepsis in categories with different outcomes, including mortality rates. Objectives To identify variables to be included in each component of PIRO aiming to improve the hospital mortality prediction. Methods Patients were selected from the Portuguese ICU-admitted community-acquired sepsis study (SACiUCI). Variables concerning the R and O component included repeated measurements along the first five days in ICU stay. The trends of these variables were summarized as the initial value at day 1 (D1) and the slope of the tendency during the five days, using a linear mixed model. Logistic regression models were built to assess the best set of covariates that predicted hospital mortality. Results A total of 891 patients (age 60±17 years, 64% men, 38% hospital mortality) were studied. Factors significantly associated with mortality for P component were gender, age, chronic liver failure, chronic renal failure and metastatic cancer; for I component were positive blood cultures, guideline concordant antibiotic therapy and health-care associated sepsis; for R component were C-reactive protein slope, D1 heart rate, heart rate slope, D1 neutrophils and neutrophils slope; for O component were D1 serum lactate, serum lactate slope, D1 SOFA and SOFA slope. The relative weight of each component of PIRO was calculated. The combination of these four results into a single-value predictor of hospital mortality presented an AUC-ROC 0.84 (IC95%:0.81–0.87) and a test of goodness-of-fit (Hosmer and Lemeshow) of p = 0.368. Conclusions We identified specific variables associated with each of the four components of PIRO, including biomarkers and a dynamic view of the patient daily clinical course. This novel approach to PIRO concept and overall score can be a better predictor of mortality for patients with community-acquired sepsis admitted to ICUs.
References
[1]
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, et al. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29: 1303–1310.
[2]
Chalupka AN, Talmor D (2012) The economics of sepsis. Crit Care Clin 28: 57–vi, 57-76, vi.
[3]
Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348: 1546–1554.
[4]
Padkin A, Goldfrad C, Brady AR, Young D, Black N, et al. (2003) Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med 31: 2332–2338.
[5]
Brun-Buisson C, Meshaka P, Pinton P, Vallet B (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30: 580–588.
[6]
Finfer S, Bellomo R, Lipman J, French C, Dobb G, et al. (2004) Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units. Intensive Care Med 30: 589–596.
[7]
Harrison DA, Welch CA, Eddleston JM (2006) The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. Crit Care 10: R42.
[8]
Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22: 707–710.
[9]
Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, et al. (1995) Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 23: 1638–1652.
[10]
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31: 1250–1256.
[11]
Moreno RP, Metnitz B, Adler L, Hoechtl A, Bauer P, et al. (2008) Sepsis mortality prediction based on predisposition, infection and response. Intensive Care Med 34: 496–504.
[12]
Metnitz PG, Moreno RP, Almeida E, Jordan B, Bauer P, et al. (2005) SAPS 3–From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med 31: 1336–1344.
[13]
Rubulotta F, Marshall JC, Ramsay G, Nelson D, Levy M, et al. (2009) Predisposition, insult/infection, response, and organ dysfunction: A new model for staging severe sepsis. Crit Care Med 37: 1329–1335.
[14]
Vincent JL, Angus DC, Artigas A, Kalil A, Basson BR, et al. (2003) Effects of drotrecogin alfa (activated) on organ dysfunction in the PROWESS trial. Crit Care Med 31: 834–840.
[15]
Beale R, Reinhart K, Brunkhorst FM, Dobb G, Levy M, et al. (2009) Promoting Global Research Excellence in Severe Sepsis (PROGRESS): lessons from an international sepsis registry. Infection 37: 222–232.
[16]
Howell MD, Talmor D, Schuetz P, Hunziker S, Jones AE, et al. (2011) Proof of principle: the predisposition, infection, response, organ failure sepsis staging system. Crit Care Med 39: 322–327.
[17]
Rello J, Rodriguez A, Lisboa T, Gallego M, Lujan M, et al. (2009) PIRO score for community-acquired pneumonia: a new prediction rule for assessment of severity in intensive care unit patients with community-acquired pneumonia. Crit Care Med 37: 456–462.
[18]
Lisboa T, Diaz E, Sa-Borges M, Socias A, Sole-Violan J, et al. (2008) The ventilator-associated pneumonia PIRO score: a tool for predicting ICU mortality and health-care resources use in ventilator-associated pneumonia. Chest 134: 1208–1216.
[19]
Ferreira AM, Sakr Y (2011) Organ dysfunction: general approach, epidemiology, and organ failure scores. Semin Respir Crit Care Med 32: 543–551.
[20]
Soares M, Lisboa T, Salluh JI (2011) Translating the PIRO staging system concept into clinical practice: where do we go from here? Crit Care Med 39: 408–409.
[21]
Levy MM, Macias WL, Vincent JL, Russell JA, Silva E, et al. (2005) Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med 33: 2194–2201.
[22]
Povoa P (2008) Serum markers in community-acquired pneumonia and ventilator-associated pneumonia. Curr Opin Infect Dis 21: 157–162.
[23]
Rivers EP, Kruse JA, Jacobsen G, Shah K, Loomba M, et al. (2007) The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med 35: 2016–2024.
[24]
Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, et al. (2009) Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 302: 1059–1066.
[25]
Povoa PR, Carneiro AH, Ribeiro OS, Pereira AC (2009) Influence of vasopressor agent in septic shock mortality. Results from the Portuguese Community-Acquired Sepsis Study (SACiUCI study). Crit Care Med 37: 410–416.
[26]
Cardoso T, Carneiro AH, Ribeiro O, Teixeira-Pinto A, Costa-Pereira A (2010) Reducing mortality in severe sepsis with the implementation of a core 6-hour bundle: results from the Portuguese community-acquired sepsis study (SACiUCI study). Crit Care 14: R83.
[27]
Povoa P, Teixeira-Pinto AM, Carneiro AH (2011) C-reactive protein, an early marker of community-acquired sepsis resolution: a multi-center prospective observational study. Crit Care 15: R169.
[28]
Hutt E, Kramer AM (2002) Evidence-based guidelines for management of nursing home-acquired pneumonia. J Fam Pract 51: 709–716.
Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270: 2957–2963.
[31]
Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13: 818–829.
[32]
Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, et al. (1999) Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29: 745–758.
[33]
Mermel LA, Farr BM, Sherertz RJ, Raad II, O'Grady N, et al. (2001) Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32: 1249–1272.
[34]
Solomkin JS, Mazuski JE, Baron EJ, Sawyer RG, Nathens AB, et al. (2003) Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis 37: 997–1005.
[35]
Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, et al. (2004) Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 39: 1267–1284.
[36]
Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, et al. (2005) Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 41: 1373–1406.
[37]
Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, et al. (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44 Suppl 2: S27–72.
[38]
Menendez R, Torres A, Zalacain R, Aspa J, Martin-Villasclaras JJ, et al. (2005) Guidelines for the treatment of community-acquired pneumonia: predictors of adherence and outcome. Am J Respir Crit Care Med 172: 757–762.