Despite successful approaches to preserve organs, tissues, and isolated cells, the maintenance of stem cell viability and function in body fluids during storage for cell distribution and transportation remains unexplored. The aim of this study was to characterize urine-derived stem cells (USCs) after optimal preservation of urine specimens for up to 24 hours. A total of 415 urine specimens were collected from 12 healthy men (age range 20–54 years old). About 6×104 cells shed off from the urinary tract system in 24 hours. At least 100 USC clones were obtained from the stored urine specimens after 24 hours and maintained similar biological features to fresh USCs. The stored USCs had a “rice grain” shape in primary culture, and expressed mesenchymal stem cell surface markers, high telomerase activity, and normal karyotypes. Importantly, the preserved cells retained bipotent differentiation capacity. Differentiated USCs expressed myogenic specific proteins and contractile function when exposed to myogenic differentiation medium, and they expressed urothelial cell-specific markers and barrier function when exposed to urothelial differentiation medium. These data demonstrated that up to 75% of fresh USCs can be safely persevered in urine for 24 hours and that these cells stored in urine retain their original stem cell properties, indicating that preserved USCs could be available for potential use in cell-based therapy or clinical diagnosis.
References
[1]
Zaheer HA, Gibson FM, Bagnara M, Gordon-Smith EC, Rutherford TR (1994) Differential sensitivity to cryopreservation of clonogenic progenitor cells and stromal precursors from leukemic and normal bone marrow. Stem Cells 12: 180–186.
[2]
Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, et al. (2011) Organ Preservation: Current Concepts and New Strategies for the Next Decade. Transfus Med Hemother 38: 125–142.
[3]
Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, et al. (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180: 2226–2233.
[4]
Wu S, Liu Y, Bharadwaj S, Atala A, Zhang Y (2011) Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32: 1317–1326.
[5]
Bharadwaj S, Liu G, Shi Y, Markert C, Andersson KE, et al. (2011) Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A 17: 2123–2132.
[6]
Bharadwaj BW, Wu S, Rohozinski S, Furth J, Atala M, et al. (2009) Multipotential Differentiation of Human Urine-Derived Stem Cells. Tissue Engineering and Regenerative Medicine 2nd World Congress S293.
[7]
Wu S, Wang Z, Bharadwaj S, Hodges SJ, Atala A, et al. (2011) Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J Urol 186: 640–647.
[8]
Bharadwaj S, Wu S, Hodges S, Atala A, Zhang Y (2011) Skeletal muscle differentiation of human urine-derived stem cells for injection therapy in the treatment of stress urinary incontinence. J Urology 184: E681.
[9]
Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, et al. (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31: 8889–8901.
[10]
Kropp BP, Zhang Y, Tomasek JJ, Cowan R, Furness PD 3rd, et al. (1999) Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J Urol 162: 1779–1784.
[11]
De Boer WI, Rebel JM, Vermey M, Thijssen CD, Van der Kwast TH (1994) Multiparameter analysis of primary epithelial cultures grown on cyclopore membranes. J Histochem Cytochem 42: 277–282.
[12]
Luder HU, Amstad-Jossi M (2012) Electron microscopy. Methods Mol Biol 887: 81–93.
[13]
Tian H, Bharadwaj S, Liu Y, Ma PX, Atala A, et al. (2010) Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A 16: 1769–1779.
[14]
Pellettieri J, Sanchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41: 83–105.
[15]
Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001–1020.
[16]
Hoath SB, Leahy DG (2003) The organization of human epidermis: functional epidermal units and phi proportionality. J Invest Dermatol 121: 1440–1446.
[17]
Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21: 1783–1787.
[18]
Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, et al. (2010) Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 28: 2065–2072.
[19]
Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10: 709–716.
[20]
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.
[21]
Isachenko E, Isachenko V, Rahimi G, Nawroth F (2003) Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen. Eur J Obstet Gynecol Reprod Biol 108: 186–193.
[22]
Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, et al. (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20: 249–258.
[23]
Rubio D, Garcia S, Paz MF, De la Cueva T, Lopez-Fernandez LA, et al. (2008) Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 3: e1398.
[24]
Penny J, Harris P, Shakesheff KM, Mobasheri A (2012) The biology of equine mesenchymal stem cells: phenotypic characterization, cell surface markers and multilineage differentiation. Front Biosci 17: 892–908.
[25]
Huss R (2000) Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. Stem Cells 18: 1–9.
[26]
Jiang S, Bailey AS, Goldman DC, Swain JR, Wong MH, et al. (2008) Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3: e3812.
[27]
Tian H, Bharadwaj S, Liu Y, Ma H, Ma PX, et al. (2010) Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials 31: 870–877.
[28]
Tee JM, van Rooijen C, Boonen R, Zivkovic D (2009) Regulation of slow and fast muscle myofibrillogenesis by Wnt/beta-catenin and myostatin signaling. PLoS One 4: e5880.
[29]
Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75: 1153–1165.
[30]
Kreft ME, Robenek H (2012) Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PLoS One 7: e38509.
[31]
Wigley CB, Franks LM (1976) Salivary epithelial cells in primary culture: characterization of their growth and functional properties. J Cell Sci 20: 149–165.
[32]
Fridell JA, Mangus RS, Tector AJ (2009) Clinical experience with histidine-tryptophan-ketoglutarate solution in abdominal organ preservation: a review of recent literature. Clin Transplant 23: 305–312.
[33]
Nakanishi W, Imura T, Inagaki A, Nakamura Y, Sekiguchi S, et al. (2012) Ductal injection does not increase the islet yield or function after cold storage in a vascular perfusion model. PLoS One 7: e42319.
[34]
Muhlbacher F, Langer F, Mittermayer C (1999) Preservation solutions for transplantation. Transplant Proc 31: 2069–2070.