Background Gene-environment interaction studies offer the prospect of robust causal inference through both gene identification and instrumental variable approaches. As such they are a major and much needed development. However, conducting these studies using traditional methods, which require direct participant contact, is resource intensive. The ability to conduct gene-environment interaction studies remotely would reduce costs and increase capacity. Aim To develop a platform for the remote conduct of gene-environment interaction studies. Methods A random sample of 15,000 men and women aged 50+ years and living in Cardiff, South Wales, of whom 6,012 were estimated to have internet connectivity, were mailed inviting them to visit a web-site to join a study of successful ageing. Online consent was obtained for questionnaire completion, cognitive testing, re-contact, record linkage and genotyping. Cognitive testing was conducted using the Cardiff Cognitive Battery. Bio-sampling was randomised to blood spot, buccal cell or no request. Results A heterogeneous sample of 663 (4.5% of mailed sample and 11% of internet connected sample) men and women (47% female) aged 50–87 years (median = 61 yrs) from diverse backgrounds (representing the full range of deprivation scores) was recruited. Bio-samples were donated by 70% of those agreeing to do so. Self report questionnaires and cognitive tests showed comparable distributions to those collected using face-to-face methods. Record linkage was achieved for 99.9% of participants. Conclusion This study has demonstrated that remote methods are suitable for the conduct of gene-environment interaction studies. Up-scaling these methods provides the opportunity to increase capacity for large-scale gene-environment interaction studies.
References
[1]
Manolio TA, Bailey-Wilson JE, Collins FS (2006) Genes, environment and the value of prospective cohort studies. Nat Rev Genet 7: 812–820. nrg1919 [pii];10.1038/nrg1919 [doi].
[2]
Davey-Smith G., Ebrahim S (2005) What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ 330: 1076–1079. 330/7499/1076 [pii];10.1136/bmj.330.7499.1076 [doi].
[3]
Manolio TA, Weis BK, Cowie CC, Hoover RN, Hudson K, et al.. (2012) New models for large prospective studies: is there a better way? Am J Epidemiol 175: 859–866. kwr453 [pii];10.1093/aje/kwr453 [doi].
[4]
Rothman KJ, Cann CI, Walker AM (1997) Epidemiology and the internet. Epidemiology 8: 123–125.
[5]
Ekman A, Klint A, Dickman PW, Adami HO, Litton JE (2007) Optimizing the design of web-based questionnaires - experience from a population-based study among 50,000 women. European Journal of Epidemiology 22: 281–283.
[6]
van Gelder MM, Bretveld RW, Roeleveld N (2010) Web-based Questionnaires: The Future in Epidemiology? Am J Epidemiol 172: 1292–1298. kwq291 [pii];10.1093/aje/kwq291 [doi].
[7]
Huybrechts KF, Mikkelsen EM, Christensen T, Riis AH, Hatch EE, et al.. (2010) A successful implementation of e-epidemiology: the Danish pregnancy planning study 'Snart-Gravid'. Eur J Epidemiol 25: 297–304. 10.1007/s10654-010-9431-y [doi].
[8]
Taverner N, Longley M, Gallacher J (2010) Willingness of the public to participate in online epidemiologic studies. Interactive Journal of Medical Internet Research.Knol.
[9]
Wood F, Kowalczuk J, Eleyn G, Mitchell C, Gallacher J (2011) Achieving online consent to participation in large scale gene-environment studies: a tangible destination. Journal of Medical Ethics. 37(8): 487–492.
[10]
Collins R (2012). What makes UK Biobank special? Lancet. 379(9822)1173–1174.
[11]
Welsh Assembly Government (2008) Living in Wales Survey 2007.
[12]
Gallacher JE (2007) The case for large scale fungible cohorts. Eur J Public Health 17: 548–549.
[13]
Lyons RA, Jones KH, John G, Brooks CJ, Verplancke JP, et al.. (2009) The SAIL databank: linking multiple health and social care datasets. BMC Med Inform Decis Mak 9: 3. 1472-6947-9-3 [pii];10.1186/1472-6947-9-3 [doi].
[14]
Klovning A, Sandvik H, Hunskaar S (2009) Web-based survey attracted age-biased sample with more severe illness than paper-based survey. J Clin Epidemiol 62: 1068–1074.
[15]
Ekman A, Dickman PW, Klint A, Weiderpass E, Litton JE (2006) Feasibility of using web-based questionnaires in large population-based epidemiological studies. European Journal of Epidemiology 21: 103–111.
[16]
McCabe SE, Diez A, Boyd CJ, Nelson TF, Weitzman ER (2006) Comparing web and mail responses in a mixed mode survey in college alcohol use research. Addict Behav 31: 1619–1627.
[17]
Touvier M, Mejean C, Kesse-Guyot E, Pollet C, Malon A, et al. (2010) Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur J Epidemiol.2010 25(5): 287–96.
[18]
Reilly R, Paranjothy S, Beer H, Brooks C, Fielder H, et al.. (2011) Birth outcomes following treatment for precancerous changes to the cervix: a population-based record linkage study. BJOG. 10.1111/j.1471-0528.2011.03052.x [doi].
[19]
Davey SG (2011) Random allocation in observational data: how small but robust effects could facilitate hypothesis-free causal inference. Epidemiology 22: 460–463. 10.1097/EDE.0b013e31821d0426 [doi];00001648-201107000-00004 [pii].
[20]
Smith B, Smith TC, Gray GC, Ryan MA (2007) When epidemiology meets the Internet: Web-based surveys in the Millennium Cohort Study. Am J Epidemiol 166: 1345–1354. kwm212 [pii];10.1093/aje/kwm212 [doi].
[21]
Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, et al.. (2010) The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10: 242. 1471-2458-10-242 [pii];10.1186/1471-2458-10-242 [doi].
[22]
Mikkelsen EM, Hatch EE, Wise LA, Rothman KJ, Riis A, et al..(2009) Cohort profile: the Danish Web-based Pregnancy Planning Study–‘Snart-Gravid’. Int J Epidemiol 38: 938–943. dyn191 [pii];10.1093/ije/dyn191 [doi].
[23]
Almqvist C, Adami HO, Franks PW, Groop L, Ingelsson E, et al.. (2011) LifeGene–a large prospective population-based study of global relevance. Eur J Epidemiol 26: 67–77. 10.1007/s10654-010-9521-x [doi].
[24]
Kivimaki M, Ferrie JE (2011) Epidemiology of healthy ageing and the idea of more refined outcome measures. Int J Epidemiol 40: 845–847. dyr114 [pii];10.1093/ije/dyr114 [doi].