Separate Developmental Programs for HLA-A and -B Cell Surface Expression during Differentiation from Embryonic Stem Cells to Lymphocytes, Adipocytes and Osteoblasts
A major problem of allogeneic stem cell therapy is immunologically mediated graft rejection. HLA class I A, B, and Cw antigens are crucial factors, but little is known of their respective expression on stem cells and their progenies. We have recently shown that locus-specific expression (HLA-A, but not -B) is seen on some multipotent stem cells, and this raises the question how this is in other stem cells and how it changes during differentiation. In this study, we have used flow cytometry to investigate the cell surface expression of HLA-A and -B on human embryonic stem cells (hESC), human hematopoietic stem cells (hHSC), human mesenchymal stem cells (hMSC) and their fully-differentiated progenies such as lymphocytes, adipocytes and osteoblasts. hESC showed extremely low levels of HLA-A and no -B. In contrast, multipotent hMSC and hHSC generally expressed higher levels of HLA-A and clearly HLA-B though at lower levels. IFNγ induced HLA-A to very high levels on both hESC and hMSC and HLA-B on hMSC. Even on hESC, a low expression of HLA-B was achieved. Differentiation of hMSC to osteoblasts downregulated HLA-A expression (P = 0.017). Interestingly HLA class I on T lymphocytes differed between different compartments. Mature bone marrow CD4+ and CD8+ T cells expressed similar HLA-A and -B levels as hHSC, while in the peripheral blood they expressed significantly more HLA-B7 (P = 0.0007 and P = 0.004 for CD4+ and CD8+ T cells, respectively). Thus different HLA loci are differentially regulated during differentiation of stem cells.
References
[1]
Abbas AK, Lichtman AH, Pillai S (2010) Cellular and Molecular Immunology. Saunders/Elsevier. 566 p.
[2]
Roitt IM, Brostoff J, Male DK (2001) Immunology. Mosby. 480 p.
[3]
Parham P (2009) The Immune System. Garland Science. 506 p.
[4]
Ahmed-Ansari A, Tadros TS, Knopf WD, Murphy DA, Hertzler G, et al. (1988) Major histocompatibility complex class I and class II expression by myocytes in cardiac biopsies posttransplantation. Transplantation 45: 972–978.
[5]
Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, et al. (2009) Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127: 26–39.
[6]
Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ (1984) The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation 38: 287–292.
[7]
David-Watine B, Israel A, Kourilsky P (1990) The regulation and expression of MHC class I genes. Immunol Today 11: 286–292.
[8]
Eberlein-Gonska M, Sill H, Waldherr R (1989) [Expression of class I and class II histocompatibility antigens in inflammatory kidney diseases]. Verh Dtsch Ges Pathol 73: 117–123.
[9]
Fleming KA, McMichael A, Morton JA, Woods J, McGee JO (1981) Distribution of HLA class 1 antigens in normal human tissue and in mammary cancer. J Clin Pathol 34: 779–784.
[10]
Gielen V, Schmitt D, Thivolet J (1988) HLA class I antigen (heavy and light chain) expression by Langerhans cells and keratinocytes of the normal human epidermis: ultrastructural quantitation using immunogold labelling procedure. Arch Dermatol Res 280: 131–136.
[11]
Gono T, Katsumata Y, Kawaguchi Y, Soejima M, Wakasugi D, et al. (2009) Selective expression of MHC class I in the affected muscle of a patient with idiopathic inflammatory myopathy. Clin Rheumatol 28: 873–876.
[12]
Saenz-Lopez P, Gouttefangeas C, Hennenlotter J, Concha A, Maleno I, et al. (2010) Higher HLA class I expression in renal cell carcinoma than in autologous normal tissue. Tissue Antigens 75: 110–118.
[13]
Singer DS, Maguire JE (1990) Regulation of the expression of class I MHC genes. Crit Rev Immunol 10: 235–257.
[14]
Wang EC, Damrose EJ, Mendelsohn AH, Nelson SD, Shintaku IP, et al. (2006) Distribution of class I and II human leukocyte antigens in the larynx. Otolaryngol Head Neck Surg 134: 280–287.
[15]
Horwitz MS, Evans CF, Klier FG, Oldstone MB (1999) Detailed in vivo analysis of interferon-gamma induced major histocompatibility complex expression in the the central nervous system: astrocytes fail to express major histocompatibility complex class I and II molecules. Lab Invest 79: 235–242.
[16]
Bakker M, Kijlstra A (1985) The expression of HLA-antigens in the human anterior uvea. Curr Eye Res 4: 599–604.
[17]
Benevolo M, Mottolese M, Piperno G, Sperduti I, Cione A, et al. (2007) HLA-A, -B, -C expression in colon carcinoma mimics that of the normal colonic mucosa and is prognostically relevant. Am J Surg Pathol 31: 76–84.
[18]
Cockfield SM, Urmson J, Pleasants J, Halloran PF (1989) Is normal MHC class I and II expression constitutive or induced? Transplant Proc 21: 630–631.
[19]
Cunningham AC, Milne DS, Wilkes J, Dark JH, Tetley TD, et al. (1994) Constitutive expression of MHC and adhesion molecules by alveolar epithelial cells (type II pneumocytes) isolated from human lung and comparison with immunocytochemical findings. J Cell Sci 107 (Pt 2): 443–449.
[20]
Dutta N, Majumder D, Gupta A, Mazumder DN, Banerjee S (2005) Analysis of human lymphocyte antigen class I expression in gastric cancer by reverse transcriptase-polymerase chain reaction. Hum Immunol 66: 164–169.
[21]
Foglieni C, Maisano F, Dreas L, Giazzon A, Ruotolo G, et al. (2008) Mild inflammatory activation of mammary arteries in patients with acute coronary syndromes. Am J Physiol Heart Circ Physiol 294: H2831–H2837.
[22]
Hobbs CG, Rees LE, Heyderman RS, Birchall MA, Bailey M (2006) Major histocompatibility complex class I expression in human tonsillar and laryngeal epithelium. Clin Exp Immunol 145: 365–371.
[23]
Jones RA, Scott CS, Child JA (1988) Expression of MHC class I and class I-like gene products on the cell membrane of mature and immature T cells. Leuk Res 12: 799–804.
[24]
Meunier L, Vian L, Lagoueyte C, Lavabre-Bertrand T, Duperray C, et al. (1996) Quantification of CD1a, HLA-DR, and HLA class I expression on viable human Langerhans cells and keratinocytes. Cytometry 26: 260–264.
[25]
Theobald VA, Lauer JD, Kaplan FA, Baker KB, Rosenberg M (1993) “Neutral allografts”–lack of allogeneic stimulation by cultured human cells expressing MHC class I and class II antigens. Transplantation 55: 128–133.
[26]
Johnson DR (2000) Differential expression of human major histocompatibility class I loci: HLA-A, -B, and -C. Hum Immunol 61: 389–396.
[27]
Sutton R, Warnock GL, McWhinnie DL, Gray DW, Peters M, et al. (1987) Expression of HLA in isolated human pancreatic islets and cryopreservation. Transplant Proc 19: 220–221.
[28]
Loyson SA, Rademakers LH, Joling P, Vroom TM, van den Tweel JG (1997) Immunohistochemical analysis of decalcified paraffin-embedded human bone marrow biopsies with emphasis on MHC class I and CD34 expression. Histopathology 31: 412–419.
[29]
Isa A, Nehlin JO, Sabir HJ, Andersen TE, Gaster M, et al. (2010) Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors. PLoS One 5: e10900.
[30]
Harkness L, Rasmussen IA, Erb K, Kassem M (2010) Derivation and characterisation of hESC lines from supernumerary embryos, experience from Odense, Denmark. In Vitro Cell Dev Biol Anim 46: 259–268.
[31]
Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, et al. (2011) Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone 48: 231–241.
[32]
Prokhorova TA, Rigbolt KT, Johansen PT, Henningsen J, Kratchmarova I, et al. (2009) Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 8: 959–970.
[33]
Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34: 461–475.
[34]
Taipaleenmaki H, Abdallah BM, AlDahmash A, Saamanen AM, Kassem M (2011) Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp Cell Res 317: 745–756.
[35]
Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350: 1353–1356.
[36]
Cabrera CM, Nieto A, Cortes JL, Montes RM, Catalina P, et al. (2007) The low rate of HLA class I molecules on the human embryonic stem cell line HS293 is associated with the APM components’ expression level. Cell Biol Int 31: 1072–1078.
[37]
Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200: 249–258.
[38]
Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, et al. (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99: 9864–9869.
[39]
Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, et al. (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22: 448–456.
[40]
Basak GW, Yasukawa S, Alfaro A, Halligan S, Srivastava AS, et al. (2009) Human embryonic stem cells hemangioblast express HLA-antigens. J Transl Med 7: 27 doi:10.1186/1479-5876-7-27.
[41]
Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, et al. (1998) HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8: 531–542.
[42]
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31: 890–896.
[43]
Giacomini P, Beretta A, Nicotra MR, Ciccarelli G, Martayan A, et al. (1997) HLA-C heavy chains free of beta2-microglobulin: distribution in normal tissues and neoplastic lesions of non-lymphoid origin and interferon-gamma responsiveness. Tissue Antigens 50: 555–566.
[44]
Stam NJ, Vroom TM, Peters PJ, Pastoors EB, Ploegh HL (1990) HLA-A- and HLA-B-specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. Int Immunol 2: 113–125.
[45]
Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, et al. (2011) Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 12: 39 doi:10.1186/1471-2172-12-39.
[46]
Friedrich D, Jalbert E, Dinges WL, Sidney J, Sette A, et al. (2011) Vaccine-induced HIV-specific CD8+ T cells utilize preferential HLA alleles and target-specific regions of HIV-1. J Acquir Immune Defic Syndr 58: 248–252.
[47]
Kim AY, Kuntzen T, Timm J, Nolan BE, Baca MA, et al. (2011) Spontaneous control of HCV is associated with expression of HLA-B 57 and preservation of targeted epitopes. Gastroenterology 140: 686–696.
[48]
Kaslow RA, Rivers C, Tang J, Bender TJ, Goepfert PA, et al. (2001) Polymorphisms in HLA class I genes associated with both favorable prognosis of human immunodeficiency virus (HIV) type 1 infection and positive cytotoxic T-lymphocyte responses to ALVAC-HIV recombinant canarypox vaccines. J Virol 75: 8681–8689.
[49]
Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, et al. (2007) High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 110: 4576–4583.