In a stimulated emission depletion (STED) microscope the region in which fluorescence markers can emit spontaneously shrinks with continued STED beam action after a singular excitation event. This fact has been recently used to substantially improve the effective spatial resolution in STED nanoscopy using time-gated detection, pulsed excitation and continuous wave (CW) STED beams. We present a theoretical framework and experimental data that characterize the time evolution of the effective point-spread-function of a STED microscope and illustrate the physical basis, the benefits, and the limitations of time-gated detection both for CW and pulsed STED lasers. While gating hardly improves the effective resolution in the all-pulsed modality, in the CW-STED modality gating strongly suppresses low spatial frequencies in the image. Gated CW-STED nanoscopy is in essence limited (only) by the reduction of the signal that is associated with gating. Time-gated detection also reduces/suppresses the influence of local variations of the fluorescence lifetime on STED microscopy resolution.
References
[1]
Abbe E (1873) Beitr?ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9: 413–468.
[2]
Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19: 780–782.
Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A Mater Sci Process 77: 859–860.
[5]
Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60: 495–497.
[6]
Bretschneider S, Eggeling C, Hell SW (2007) Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving. Phys Rev Lett 98: 218103.
[7]
Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102: 17565–17569.
[8]
Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, et al. (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature: 204–208.
[9]
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, et al. (2006) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313: 1642–1645.
[10]
Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Meth 3: 793–795.
F?lling J, Bossi M, Bock H, Medda R, Wurm CA, et al. (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Meth 5: 943–945.
[13]
Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, et al. (2008) Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes. Angew Chem Int Ed Engl 47: 6172–6176.
[14]
Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440: 935–939.
[15]
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, et al. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457: 1159–1162.
[16]
Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a Living Mouse Brain. Science 335: 551.
[17]
Blom H, Ronnlund D, Scott L, Spicarova Z, Widengren J, et al. (2011) Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy. Bmc Neurosci 12: 16.
[18]
Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nature Meth 4: 915–918.
[19]
Rankin BR, Kellner RR, Hell SW (2008) Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Opt Lett 33: 2491–2493.
[20]
Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16: 9614–9621.
Liu Y, Ding Y, Alonas E, Zhao W, Santangelo PJ, et al. (2012) Achieving lambda/10 resolution CW STED nanoscopy with a Ti:Sapphire oscillator. Plos One 7: e40003.
[23]
Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, et al. (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103: 11440–11445.
[24]
Westphal V, Hell SW (2005) Nanoscale Resolution in the Focal Plane of an Optical Microscope. Phys Rev Lett 94: 143903.
[25]
Dedecker P, Muls B, Hofkens J, Enderlein J, Hotta JI (2007) Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams. Optics Express 15: 3372–3383.
[26]
Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18: 26417–26429.
[27]
Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A (2012) Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc Natl Acad Sci U S A 109: 6390–6393.
[28]
Dyba M, Hell SW (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Appl Optics 42: 5123–5129.
[29]
Schrader M, Meinecke F, Bahlmann K, Kroug M, Cremer C, et al. (1995) Monitoring the excited state of a dye in a microscope by stimulated emission. Bioimaging 3: 147–153.
[30]
Auksorius E, Boruah BR, Dunsby C, Lanigan PMP, Kennedy G, et al. (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33: 113–115.
[31]
Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19: 4242–4254.
[32]
Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, et al. (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8: 571–573.
[33]
Fu CC, Lee HY, Chen K, Lim TS, Wu HY, et al. (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A 104: 727–732.
[34]
Weber K, Bibring T, Osborn M (1975) Specific visualization of tubulin-containing structures in tissue-culture cells by immunofluorescence - cytoplasmic microtubules, vinblastine-induced paracrystals, and mitotic figures. Exp Cell Res 95: 111–120.
[35]
Wurm CA, Neumann D, Schmidt R, Egner A, Jakobs S (2010) Sample Preparation for STED Microscopy. Live Cell Imaging: Humana Press. 185–189.
[36]
Kolmakov K, Belov VN, Bierwagen J, Ringemann C, Mueller V, et al. (2009) Red-Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy. Chemistry: A European Journal 16: 158–166.
[37]
Maus M, Cotlet M, Hofkens J, Gensch T, De Schryver FC, et al. (2001) An Experimental Comparison of the Maximum Likelihood Estimation and Nonlinear Least-Squares Fluorescence Lifetime Analysis of Single Molecules. Anal Chem 73: 2078–2086.
[38]
Harke B, Keller J, Ullal CK, Westphal V, Schoenle A, et al. (2008) Resolution scaling in STED microscopy. Opt Express 16: 4154–4162.
[39]
Leutenegger M, Rao R, Leitgeb RA, Lasser T (2006) Fast focus field calculations. Opt Express 14: 11277–11291.
[40]
Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20: 5225–5236.
[41]
Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174: 553–557.
[42]
Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, et al. (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20: 7362–7374.
[43]
Han KY, Kim SK, Eggeling C, Hell S (2010) Metastable Dark States Enable Ground State Depletion Microscopy of Nitrogen Vacancy Centers in Diamond with Diffraction-Unlimited Resolution. Nano Lett 10: 3199–3203.
[44]
Smith BR, Gruber D, Plakhotnik T (2010) The effects of surface oxidation on luminescence of nano diamonds. Diam Relat Mater 19: 314–318.
[45]
Luchowski R, Matveeva EG, Gryczynski I, Terpetschnig EA, Patsenker L, et al. (2008) Single molecule studies of multiple-fluorophore labeled antibodies. Effect of homo-FRET on the number of photons available before photobleaching. Curr Pharm Biotechnol 9: 411–420.
[46]
Bertero M, Boccacci P, Desiderà G, Vicidomini G (2009) Image deblurring with Poisson data: from cells to galaxies. Inverse Probl 25: 123006.
[47]
Vicidomini G, Boccacci P, Diaspro A, Bertero M (2009) Application of the split-gradient method to 3D image deconvolution in fluorescence microscopy. J Microsc-Oxford 234: 47–61.