全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

SDF-1 Promotes Endochondral Bone Repair during Fracture Healing at the Traumatic Brain Injury Condition

DOI: 10.1371/journal.pone.0054077

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purposes The objective of this study was to investigate the role of stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, on bone healing and whether SDF-1 contributes to accelerating bone repair in traumatic brain injury (TBI)/fracture model. Materials and Methods Real-time polymerase chain reaction and immunohistochemical analysis were used to detect the expression of SDF-1 during the repair of femoral bone in TBI/fracture model. The TBI/fracture model was treated with anti–SDF-1 neutralizing antibody or AMD3100, an antagonist for CXCR4, and evaluated by histomorphometry. In vitro and in vivo migration assays were used to evaluate the functional effect of SDF-1 on primary mesenchymal stem cells. Results The expression of SDF1 and CXCR4 messenger RNA was increased during the bone healing in TBI/fracture model but was less increased in fracture only model. High expression of SDF-1 protein was observed in the surrounding tissue of the damaged bone. Treated with anti–SDF-1 antibody or AMD3100 could inhibit new bone formation. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1 participate in endochondral bone repair. Conclusion The SDF-1/CXCR4 axis plays a crucial role in the accelerating fracture healing under the condition of TBI and contributes to endochondral bone repair.

References

[1]  Beeton CA, Chatfield D, Brooks R A, Rushton N (2004) Cicrulating levels of interleukin-6 and its soluble receptor in patients with head injury and fracture. J Bone Joint Surg Br 86: 912–917.
[2]  Spencer RF (1987) The effect of head injury on fracture healing. A quantitative assessment. J Bone Joint Surg Br 69: 525–528.
[3]  Renfree KJ, Banovac K, Hornicek FJ, Lebwohl NH, Villanueva PA, et al. (1994) Evaluation of serum osteoblast mitogenic activity in spinal cord and head injury patients with acute heterotopic ossification. Spine 19: 740–746.
[4]  Wildburger R, Zarkovic N, Egger G, Petek W, Zarkovic K, et al. (1994) Basic fibroblast growth factor (bFGF) immunoreactivity as a possible link between head injury and impaired bone fracture healing. Bone Miner 27: 183–192.
[5]  Wildburger R, Zarkovic N, Egger G, Petek W, Meinitzer A, et al. (1995) Comparison of the values of basic fibroblast growth factor determined by immunoassay in the sera of patients with traumatic brain injury and enhanced osteogenesis and the effects of the same sera on fibroblast growth in vitro. Eur J Clin Chem Clin Biochem 33: 693–8.
[6]  Wildburger R, Zarkovic N, Dobnig H, Petek W, Hofer HP (1994) Post-traumatic dynamic change of carboxyterminal propeptide of type I procollagen, alkaline phosphatase and its isoenzymes as predictors for enhanced osteogenesis in patients with severe head injury. Res Exp Med (Berl) 194: 247–259.
[7]  Khare GN, Gautam VK, Gupta LN, Gupta AK (1995) A new hypothesis for faster healing of fractures in head injured patients. Indian J Med Sci 49: 281–284.
[8]  Wildburger R, Zarkovic N, Tonkovic G, Skoric T, Frech S, et al. (1998) Post-traumatic hormonal disturbances: prolactin as a link between head injury and enhanced osteogenesis. J Endocrinol Invest 21: 78–86.
[9]  Spencer RF (1990) Spasticity in association with massive new bone formation around fractures. S Afr J Surg 28: 51–54.
[10]  Tsur A, Sazbon L, Lotem M (1996) Relationship between muscular tone, movement and periarticular new bone formation in postcoma-unaware (PC-U) patients. Brain Inj 10: 259–262.
[11]  Hara-Irie F, Anuzuka N, Ozawa H (1996) Immunohistochemical and Iteastructural localization of CGRP positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs. Bone 18: 29–39.
[12]  Otfinowski J (1993) Hetemtopic induction of osteogencsis in the course of neural injury. Patol Pol 44: 133–168.
[13]  Wildburger R, Zarkovic N, Egger G, PetekW, Zarkovic K, et al. (1994) Basic fibroblast growth factor (b-FGF) immunoreactivity as a possible link between head injury and impaired bone fracture healing. Bone Miner 27: 183–192.
[14]  Bidner SM, Rubins IM, Desjardins JV, Zukor DJ, Goltzman D (1990) Evidence for a humoral mechanism for enhanced osteogenesis after head injury. J Bone Joint Surg Am 72: 1144–1149.
[15]  Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, et al. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106 2: 419–427.
[16]  Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, et al. (2007) Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit cell homing to the infarcted heart. Tissue Eng 13 8: 2063–2071.
[17]  Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, et al. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864.
[18]  Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, et al. (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80: 291–300.
[19]  Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 80: 301–313.
[20]  Tiyapatanaputi P, Rubery PT, Carmouche J, Schwarz EM, O’keefe RJ, et al. (2004) A novel murine segmental femoral graft model. J Orthop Res 22: 1254–1260.
[21]  Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2: 97–101.
[22]  Wieczorek G, Steinhoff C, Schulz R, Scheller M, Vingron M, et al. (2003) Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 311: 227–237.
[23]  Castano-Izquierdo H, Alvarez-Barreto J, vanden Dolder J, Jansen J, Mikos A, et al. (2007) Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. J Biomed Mater Res A 82: 129–138.
[24]  Mori T, Doi R, Koizumi M, Toyoda E, Ito D, et al. (2004) CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol Cancer Ther 3: 29–37.
[25]  Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, et al. (2010) Inhibition of vasculogenesis,but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120 3: 694–705.
[26]  Sun Y, Schneider A, Jung Y, Wang J, Dai J, et al. (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20: 318–329.
[27]  Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak M (2004) Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 32: 52–57.
[28]  Abbott J, Huang Y, Liu D, Hickey R, Krause D, et al. (2004) Stromal cell-derived factor-1 plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110: 3300–3305.
[29]  Ma J, Ge J, Zhang S, Sun A, Shen J, et al. (2005) Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 100: 217–223.
[30]  Ji J, He B, Dheen S, Tay S (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22: 415–427.
[31]  Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67: 1772–1784.
[32]  Ceradini D, Kulkarni A, Callaghan M, Tepper O, Bastidas N, et al. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864.
[33]  Guo Z, Li H, Li X, Yu X, Wang H, et al. (2006) In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells 24: 992–1000.
[34]  Jung Y, Wang J, Schneider A, Sun Y, Koh-Paige A, et al. (2006) Regulation of SDF-1 (CXCL12) production by osteoblasts: a possible mechanism for stem cell homing. Bone 38: 497–508.
[35]  Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, et al. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106 2: 419–427.
[36]  Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, et al. (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24: 1254–1264.
[37]  Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, et al. (2010) The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 31: 3997–4008.
[38]  Liu X, Zhou S, Li Y, Yan J (2012) Stromal cell derived factor-1α enhances bone formation based on in situ recruitment: a histologic and histometric study in rabbit calvaria. Biotechnol Lett 34(2): 387–95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133