全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

DNA Methylation in the Malignant Transformation of Meningiomas

DOI: 10.1371/journal.pone.0054114

Full-Text   Cite this paper   Add to My Lib

Abstract:

Meningiomas are central nervous system tumors that originate from the meningeal coverings of the brain and spinal cord. Most meningiomas are pathologically benign or atypical, but 3–5% display malignant features. Despite previous studies on benign and atypical meningiomas, the key molecular pathways involved in malignant transformation remain to be determined, as does the extent of epigenetic alteration in malignant meningiomas. In this study, we explored the landscape of DNA methylation in ten benign, five atypical and four malignant meningiomas. Compared to the benign tumors, the atypical and malignant meningiomas demonstrate increased global DNA hypomethylation. Clustering analysis readily separates malignant from atypical and benign tumors, implicating that DNA methylation patterns may serve as diagnostic biomarkers for malignancy. Genes with hypermethylated CpG islands in malignant meningiomas (such as HOXA6 and HOXA9) tend to coincide with the binding sites of polycomb repressive complexes (PRC) in early developmental stages. Most genes with hypermethylated CpG islands at promoters are suppressed in malignant and benign meningiomas, suggesting the switching of gene silencing machinery from PRC binding to DNA methylation in malignant meningiomas. One exception is the MAL2 gene that is highly expressed in benign group and silenced in malignant group, representing de novo gene silencing induced by DNA methylation. In summary, our results suggest that malignant meningiomas have distinct DNA methylation patterns compared to their benign and atypical counterparts, and that the differentially methylated genes may serve as diagnostic biomarkers or candidate causal genes for malignant transformation.

References

[1]  Riemenschneider MJ, Perry A, Reifenberger G (2006) Histological classification and molecular genetics of meningiomas. Lancet Neurol 5: 1045–1054.
[2]  Wrobel G, Roerig P, Kokocinski F, Neben K, Hahn M, et al. (2005) Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int J Cancer 114: 249–256.
[3]  Perry A, Gutmann DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neurooncol 70: 183–202.
[4]  Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99: 379–391.
[5]  Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85: 2046–2056.
[6]  Dobbins SE, Broderick P, Melin B, Feychting M, Johansen C, et al. (2011) Common variation at 10p12.31 near MLLT10 influences meningioma risk. Nat Genet 43: 825–827.
[7]  Lee Y, Liu J, Patel S, Cloughesy T, Lai A, et al. (2010) Genomic landscape of meningiomas. Brain Pathol 20: 751–762.
[8]  Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128: 683–692.
[9]  Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16: 6–21.
[10]  Adams RL, Burdon RH (1982) DNA methylation in eukaryotes. CRC Crit Rev Biochem 13: 349–384.
[11]  Adams RL, Lindsay H (1993) What is hemimethylated DNA? FEBS Lett 320: 243–245.
[12]  Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90: 11995–11999.
[13]  Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13: 1095–1107.
[14]  Baylin SB, Makos M, Wu JJ, Yen RW, de Bustros A, et al. (1991) Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells 3: 383–390.
[15]  Bedford MT, van Helden PD (1987) Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res 47: 5274–5276.
[16]  Diala ES, Cheah MS, Rowitch D, Hoffman RM (1983) Extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71: 755–764.
[17]  Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48: 1159–1161.
[18]  Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, et al. (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11: 6883–6894.
[19]  Jones PA, Buckley JD (1990) The role of DNA methylation in cancer. Adv Cancer Res 54: 1–23.
[20]  de Bustros A, Nelkin BD, Silverman A, Ehrlich G, Poiesz B, et al. (1988) The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc Natl Acad Sci U S A 85: 5693–5697.
[21]  Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, et al. (2011) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44: 40–46.
[22]  Makos M, Nelkin BD, Chazin VR, Cavenee WK, Brodeur GM, et al. (1993) DNA hypermethylation is associated with 17p allelic loss in neural tumors. Cancer Res 53: 2715–2718.
[23]  Makos M, Nelkin BD, Reiter RE, Gnarra JR, Brooks J, et al. (1993) Regional DNA hypermethylation at D17S5 precedes 17p structural changes in the progression of renal tumors. Cancer Res 53: 2719–2722.
[24]  Di Vinci A, Brigati C, Casciano I, Banelli B, Borzi L, et al. (2012) HOXA7, 9, and 10 are methylation targets associated with aggressive behavior in meningiomas. Transl Res
[25]  Kishida Y, Natsume A, Kondo Y, Takeuchi I, An B, et al. (2012) Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis 33: 436–441.
[26]  Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al. (2006) TM4 microarray software suite. Methods Enzymol 411: 134–193.
[27]  Thorvaldsdottir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform
[28]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
[29]  Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11: 726–734.
[30]  Tsai HC, Baylin SB (2011) Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 21: 502–517.
[31]  Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121.
[32]  Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, et al. (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.
[33]  Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, et al. (2007) Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.
[34]  Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, et al. (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 105: 12979–12984.
[35]  Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, et al. (2010) CpG island hypermethylation in human astrocytomas. Cancer Res 70: 2718–2727.
[36]  Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9: 2395–2402.
[37]  Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.
[38]  Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–220.
[39]  Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, et al. (2006) De novo CpG island methylation in human cancer cells. Cancer Res 66: 682–692.
[40]  Ting AH, Jair KW, Schuebel KE, Baylin SB (2006) Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation. Cancer Res 66: 729–735.
[41]  Mimori K, Shiraishi T, Mashino K, Sonoda H, Yamashita K, et al. (2003) MAL gene expression in esophageal cancer suppresses motility, invasion and tumorigenicity and enhances apoptosis through the Fas pathway. Oncogene 22: 3463–3471.
[42]  Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, et al. (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 12: R83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133