全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Origin of African Physacanthus (Acanthaceae) via Wide Hybridization

DOI: 10.1371/journal.pone.0055677

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gene flow between closely related species is a frequent phenomenon that is known to play important roles in organismal evolution. Less clear, however, is the importance of hybridization between distant relatives. We present molecular and morphological evidence that support origin of the plant genus Physacanthus via “wide hybridization” between members of two distantly related lineages in the large family Acanthaceae. These two lineages are well characterized by very different morphologies yet, remarkably, Physacanthus shares features of both. Chloroplast sequences from six loci indicate that all three species of Physacanthus contain haplotypes from both lineages, suggesting that heteroplasmy likely predated speciation in the genus. Although heteroplasmy is thought to be unstable and thus transient, multiple haplotypes have been maintained through time in Physacanthus. The most likely scenario to explain these data is that Physacanthus originated via an ancient hybridization event that involved phylogenetically distant parents. This wide hybridization has resulted in the establishment of an independently evolving clade of flowering plants.

References

[1]  Anderson E (1949) Introgressive Hybridization. New York: Wiley.
[2]  Mayr E (1992) A local flora and the Biological Species Concept. Am J Bot 79: 222–238.
[3]  Arnold ML, Martin NH (2010) Hybrid fitness across time and habitats. Trends Ecol Evol 25: 530–536.
[4]  Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8: 378–388.
[5]  Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, et al. (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301: 1211–1216.
[6]  Lewontin RC, Birch LC (1996) Hybridization as a source of variation for adaptation to new environments. Evolution 20: 215–336.
[7]  Larsen PA, Marchán-Rivadeneira MR, Baker RJ (2010) Natural hybridization generates mammalian lineage with species characteristics. Proc Nat Acad Sci USA 107: 11447–11452.
[8]  Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Nat Acad Sci USA 96: 5878–5883.
[9]  Mallet J (2007) Hybrid speciation. Nature 446: 279–283.
[10]  Grant PR, Grant BR (1992) Hybridization of bird species. Science 256: 193–197.
[11]  Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Nat Acad Sci USA 93: 5090–5093.
[12]  Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ, editor. Evolutionary Genetics of Fishes. New York: Plenum. pp 1–53.
[13]  Cidade FW, de Souza-Chies TT, Souza FHD, Batista LAR, Dall'Agnol M, et al. (2010) Microsatellite loci for Paspalum atratum (Poaceae) and cross-amplification in other species. Am J Bot 97: E107–110.
[14]  Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89: 1478–1484.
[15]  Darwin C (1859) On the Origin of Species (reprinted). Cambridge: Harvard University Press.
[16]  Coyne JA, Orr HA (1989) Patterns of species in Drosophila. Evolution 43: 362–381.
[17]  Soltis DE, Soltis PS, Collier TG, Edgerton ML (1991) Chloroplast DNA variation within and among genera of the Heuchera Group (Saxifragaceae): Evidence for Chloroplast Transfer and Paraphyly. Am J Bot 78: 1091–1112.
[18]  Fehrer J, Gemeinholzer B, Chrtek J, Br?utigam S (2007) Incongruent plastic and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol Phylogenet Evol 42: 347–361.
[19]  Prager EM, Wilson AC (1975) Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution Proc Nat Acad Sci USA. 72: 200–204.
[20]  Li LH, Dong YS (1993) Self-fertile trigeneric hybrid, Triticum aestivum x Agropyron michnoi x Secale cereale. Theor Appl Genet 87: 361–368.
[21]  Reed SM, Jones KD, Rinehart TA (2008) Production and characterization of intergeneric hybrids between Dichroa febrifuga and Hydrangea macrophylla. J Amer Soc Hort Sci 133: 84–91.
[22]  Wolfe AD, Randle CP (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 29: 1011–1020.
[23]  Mogensen HL (1996) The hows and whys of cytoplastmic inheritance in seed plants. Am J Bot 83: 383–404.
[24]  Doublet V, Souty-Grosset C, Bouchon D, Cordaus R, Marcadé I (2008) A thirty million year-old inherited heteroplasmy. PLoS One 3: e2938.
[25]  Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5: 568–583.
[26]  Maddison WP (1997) Gene trees in species trees. Syst Biol 46: 523–536.
[27]  Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75: 1443–1458.
[28]  Zhang Q, Liu Y (2003) Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Pl Cell Physiol 44: 941–951.
[29]  Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, et al. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82: 247–277.
[30]  Soltis DE, Mavrodiev EV, Doyle JJ, Rauscher J, Soltis PS (2008) ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst Bot 33: 7–20.
[31]  Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Nat Acad Sci USA 92: 11331–11338.
[32]  McDade LA, Daniel TF, Kiel CA, Vollesen K (2005) Phylogenetic relationships among Acantheae (Acanthaceae): major lineages present contrasting patterns of molecular evolution and morphological differentiation. Syst Bot 30: 834–862.
[33]  McDade LA, Daniel TF, Kiel CA (2008) Toward a comprehensive understanding of phylogenetic relationships among lineages of Acanthaceae s.l. (Lamiales). Am J Bot 95: 1136–1152.
[34]  Tripp EA (2007) Evolutionary relationships within the species-rich genus Ruellia (Acanthaceae). Syst Bot 32: 628–649.
[35]  Lindau G (1895) Acanthaceae. In: Engler A, Prantl H, editors. Die Natürlichen Pflanzenfamilien Vol. 4. Leipzig: Engelmann. pp 274–354.
[36]  Bremekamp CEB (1965) Delimitation and subdivision of the Acanthaceae. Bull Bot Surv India 7: 21–30.
[37]  Scotland RW, Vollesen K (2000) Classification of Acanthaceae. Kew Bull 55: 513–589.
[38]  Weihe A, Apitz J, Pohlheim F, Hartwig AS, B?rner T (2009) Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium. Mol Gen Genom 282: 587–593.
[39]  Greiner S, Rauwolf U, Meurer J, Herrmann R (2011) The role of plastids in plant speciation. Mol Ecol 20: 671–691.
[40]  Frey JE, Frey B, Forcioli D (2005) Quantitative assessment of heteroplasmy levels in Scenecio vulgaris chloroplast DNA. Genetica 123: 255–261.
[41]  Frey JE, Müller-Sch?rer H, Frey B, Frei D (1999) Complex relation between triazine-susceptible phenotype and genotype in the weed Senecio vulgaris may be caused by chloroplast DNA polymorphism. Theor Appl Genet 99: 578–586.
[42]  Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Gen 5: 123–135.
[43]  Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305: 676–678.
[44]  Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Nat Acad Sci USA 109: 2434–2438.
[45]  Newman SM, Harris EH, Johnson AM, Boynton JE, Gillham NW (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii—evidence for a hotspot and an adjacent cold region. Genetics 132: 413–429.
[46]  Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Ann Rev Genet 35: 125–148.
[47]  Son JH, Park KC, Kim TW, Park YJ, Kang JH, et al. (2010) Sequence diversification of 45S rRNA ITS, trnH-psbA spacer, and matK genic regions in several Allium species. Genes & Genomics 32: 165–172.
[48]  Stebbins GL (1950) Variation and Evolution in Plants. New York: Columbia Univ. Press.
[49]  Tripp EA (2010) Taxonomic revision of Ruellia section Chiropterophila (Acanthaceae): a lineage of rare and endemic species from Mexico. Syst Bot 35: 629–661.
[50]  Zwickl DJ (2006) dissertation, University of Texas at Austin.
[51]  Swofford D (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sunderland: Sinauer.
[52]  Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
[53]  Medus J (1975) Palynologie de sediments Tertiaires due Sénégal Méridional. Pollen et Spores 17: 545–601.
[54]  Reid EM, Chandler EJ (1926) The Bembridge Flora: Catalogue of Cainzoic plants in the Department of Geology. (British Museum of Natural History, London)
[55]  Etherington GJ, Dicks J, Roberts IN (2005) Recombination Analysis Tool (RAT): a program for the high-throughput detection of recombination. Bioinformatics 3: 278–281.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133