Thalidomide is a tumor necrosis factor alpha (TNFα) inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer’s disease (AD) is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ), which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1) activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23) mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes) to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days). These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics.
References
[1]
Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, et al. (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177: 1675–1680.
[2]
Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173: 699–703.
[3]
Melchert M, List A (2007) The thalidomide saga. Int J Biochem Cell Biol 39: 1489–1499.
[4]
Walker SL, Waters MF, Lockwood DN (2007) The role of thalidomide in the management of erythema nodosum leprosum. Lepr Rev 78: 197–215.
[5]
Mazzoccoli L, Cadoso SH, Amarante GW, de Souza MV, Domingues R, et al. (2012) Novel thalidomide analogues from diamines inhibit pro-inflammatory cytokine production and CD80 expression while enhancing IL-10. Biomed Pharmacother 66: 323–329.
[6]
Nair RR, Gebhard AW, Emmons MF, Hazlehurst LA (2012) Emerging strategies for targeting cell adhesion in multiple myeloma. Adv Pharmacol 65: 143–189.
[7]
Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R (2003) Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 21: 16–19.
[8]
Aragon-Ching JB, Li H, Gardner ER, Figg WD (2007) Thalidomide analogues as anticancer drugs. Recent Pat Anticancer Drug Discov 2: 167–174.
[9]
Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO (2009) The role of neuroimmunomodulation in Alzheimer’s disease. Ann N Y Acad Sci 1153: 240–246.
[10]
Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, et al. (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2: 23.
[11]
Lieberman AP, Pitha PM, Shin HS, Shin ML (1989) Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A 86: 6348–6352.
[12]
Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, et al. (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3×Tg-AD mice. Am J Pathol 173: 1768–1782.
[13]
Alvarez A, Cacabelos R, Sanpedro C, Garcia-Fantini M, Aleixandre M (2007) Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging 28: 533–536.
[14]
Paganelli R, Di Iorio A, Patricelli L, Ripani F, Sparvieri E, et al. (2002) Proinflammatory cytokines in sera of elderly patients with dementia: levels in vascular injury are higher than those of mild-moderate Alzheimer’s disease patients. Exp Gerontol 37: 257–263.
Tarkowski E, Andreasen N, Tarkowski A, Blennow K (2003) Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74: 1200–1205.
[17]
Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, et al. (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2: 9.
[18]
Mehlhorn G, Hollborn M, Schliebs R (2000) Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 18: 423–431.
[19]
Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, et al. (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56: 581–588.
[20]
Munch G, Apelt J, Rosemarie Kientsch E, Stahl P, Luth HJ, et al. (2003) Advanced glycation endproducts and pro-inflammatory cytokines in transgenic Tg2576 mice with amyloid plaque pathology. J Neurochem 86: 283–289.
[21]
McCusker SM, Curran MD, Dynan KB, McCullagh CD, Urquhart DD, et al. (2001) Association between polymorphism in regulatory region of gene encoding tumour necrosis factor alpha and risk of Alzheimer’s disease and vascular dementia: a case-control study. Lancet 357: 436–439.
[22]
Cheng X, Yang L, He P, Li R, Shen Y (2010) Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J Alzheimers Dis 19: 621–630.
[23]
Frankola KA, Greig NH, Luo W, Tweedie D (2011) Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets 10: 391–403.
[24]
Shen Y, He P, Zhong Z, McAllister C, Lindholm K (2006) Distinct destructive signal pathways of neuronal death in Alzheimer’s disease. Trends Mol Med 12: 574–579.
[25]
McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, et al. (2009) Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis 34: 163–177.
[26]
Tweedie D, Ferguson RA, Fishman K, Frankola KA, Van Praag H, et al. (2012) Tumor necrosis factor-alpha synthesis inhibitor 3,6′-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease. J Neuroinflammation 9: 106.
[27]
Gabbita SP, Srivastava MK, Eslami P, Johnson MF, Kobritz NK, et al. (2012) Early intervention with a small molecule inhibitor for tumor necrosis factor-alpha prevents cognitive deficits in a triple transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 9: 99.
[28]
He P, Zhong Z, Lindholm K, Berning L, Lee W, et al. (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178: 829–841.
[29]
Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94: 13287–13292.
[30]
Sommer B, Staufenbiel M (1998) A beta peptide deposition in the brains of transgenic mice: evidence for a key event in Alzheimer’s disease pathogenesis. Mol Psychiatry 3: 284–286, 282–283.
[31]
Ryu JK, McLarnon JG (2008) Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-alpha in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis 29: 254–266.
[32]
Kenyon BM, Browne F, D’Amato RJ (1997) Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64: 971–978.
[33]
Daruwalla J, Nikfarjam M, Malcontenti-Wilson C, Muralidharan V, Christophi C (2005) Effect of thalidomide on colorectal cancer liver metastases in CBA mice. J Surg Oncol 91: 134–140.
[34]
Kaicker S, McCrudden KW, Beck L, New T, Huang J, et al. (2003) Thalidomide is anti-angiogenic in a xenograft model of neuroblastoma. Int J Oncol 23: 1651–1655.
[35]
He P, Shen Y (2009) Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer’s disease. J Neurosci 29: 6545–6557.
[36]
Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, et al. (2001) The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol Med 7: 609–618.
[37]
Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C, et al. (2001) Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 158: 1345–1354.
[38]
Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53: 135–160.
[39]
Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, et al. (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23: 7504–7509.
[40]
Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S, et al. (2004) Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 24: 6144–6151.
[41]
Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49: 489–502.
[42]
LeVine H, 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309: 274–284.
[43]
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, et al. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741.
[44]
Van Dooren T, Muyllaert D, Borghgraef P, Cresens A, Devijver H, et al. (2006) Neuronal or glial expression of human apolipoprotein e4 affects parenchymal and vascular amyloid pathology differentially in different brain regions of double- and triple-transgenic mice. Am J Pathol 168: 245–260.
[45]
Gandy S (2005) The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest 115: 1121–1129.
[46]
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356.
[47]
Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9: 768–778.
[48]
Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, et al. (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402: 537–540.
[49]
Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, et al. (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14: 419–427.
[50]
Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, et al. (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402: 533–537.
[51]
Lin X, Koelsch G, Wu S, Downs D, Dashti A, et al. (2000) Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A 97: 1456–1460.
[52]
Li R, Lindholm K, Yang LB, Yue X, Citron M, et al. (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci U S A 101: 3632–3637.
[53]
Yang LB, Lindholm K, Yan R, Citron M, Xia W, et al. (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9: 3–4.
[54]
Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17: 1060–1065.
[55]
Zhang C, Khandelwal PJ, Chakraborty R, Cuellar TL, Sarangi S, et al. (2007) An AICD-based functional screen to identify APP metabolism regulators. Mol Neurodegener 2: 15.
[56]
Malito E, Hulse RE, Tang WJ (2008) Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 65: 2574–2585.
[57]
Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, et al. (2009) Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol 183: 1375–1383.
[58]
Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13: 812–818.
[59]
Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283: 29621–29625.
[60]
Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59: 1381–1389.
[61]
Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51: 783–786.
[62]
Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, et al. (2004) Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am J Pathol 164: 719–725.
[63]
Hong HS, Hwang EM, Sim HJ, Cho HJ, Boo JH, et al. (2003) Interferon gamma stimulates beta-secretase expression and sAPPbeta production in astrocytes. Biochem Biophys Res Commun 307: 922–927.
[64]
Pak T, Cadet P, Mantione KJ, Stefano GB (2005) Morphine via nitric oxide modulates beta-amyloid metabolism: a novel protective mechanism for Alzheimer’s disease. Med Sci Monit 11: BR357–366.
[65]
Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, et al. (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 10: 279–288.
[66]
Yang L, Lindholm K, Konishi Y, Li R, Shen Y (2002) Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 22: 3025–3032.
[67]
Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120: 545–555.
[68]
Boddapati S, Levites Y, Sierks MR (2011) Inhibiting beta-secretase activity in Alzheimer’s disease cell models with single-chain antibodies specifically targeting APP. J Mol Biol 405: 436–447.
[69]
Cai J, Qi X, Kociok N, Skosyrski S, Emilio A, et al. (2012) beta-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med 4: 980–991.
[70]
Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, et al. (2006) Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 26: 2467–2473.
[71]
Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, et al. (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100: 6382–6387.
[72]
Alkam T, Nitta A, Mizoguchi H, Saito K, Seshima M, et al. (2008) Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid beta-induced impairment of recognition memory in mice. Behav Brain Res 189: 100–106.
[73]
Tweedie D, Sambamurti K, Greig NH (2007) TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res 4: 378–385.
[74]
Sabbagh MN, Nural F, He P, Sirrel S, Belden C, et al.. (2010) Rationale and strategy for thalidomide as a BACE 1 inhibitor for a phase II randomized clinical trial in mild-to-moderate Alzheimer’s disease. Alzheimers Dementia 6.