全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Exploring the Diversity of Arcobacter butzleri from Cattle in the UK Using MLST and Whole Genome Sequencing

DOI: 10.1371/journal.pone.0055240

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arcobacter butzleri is considered to be an emerging human foodborne pathogen. The completion of an A. butzleri genome sequence along with microarray analysis of 13 isolates in 2007 revealed a surprising amount of diversity amongst A. butzleri isolates from humans, animals and food. In order to further investigate Arcobacter diversity, 792 faecal samples were collected from cattle on beef and dairy farms in the North West of England. Arcobacter was isolated from 42.5% of the samples and the diversity of the isolates was investigated using multilocus sequence typing. An A. butzleri whole genome sequence, obtained by 454 shotgun sequencing of an isolate from a clinically-healthy dairy cow, showed a number of differences when compared to the genome of a human-derived A. butzleri isolate. PCR-based prevalence assays for variable genes suggested some tentative evidence for source-related distributions. We also found evidence for phenotypic differences relating to growth capabilities between our representative human and cattle isolates. Our genotypic and phenotypic observations suggest that some level of niche adaptation may have occurred in A. butzleri.

References

[1]  Vandamme P, Pugina P, Benzi G, Van Etterijck R, Vlaes L, et al. (1992) Outbreak of recurrent abdominal cramps associated with Arcobacter butzleri in an Italian school. J Clin Microbiol 309: 2335–2337.
[2]  Vandenberg O, Dediste A, Houf K, Ibekwem S, Souayah H, et al. (2004) Arcobacter species in humans. Emerg Infect Dis 1010: 1863–1867.
[3]  Prouzet-Mauleon V, Labadi L, Bouges N, Menard A, Megraud F (2006) Arcobacter butzleri: underestimated enteropathogen. Emerg Infect Dis 122: 307–309.
[4]  Villarruel-Lopez A, Marquez-Gonzalez M, Garay-Martinez LE, Zepeda H, Castillo A, et al. (2003) Isolation of Arcobacter spp. from retail meats and cytotoxic effects of isolates against vero cells. J Food Prot 668: 1374–1378.
[5]  Kabeya H, Maruyama S, Morita Y, Ohsuga T, Ozawa S, et al. (2004) Prevalence of Arcobacter species in retail meats and antimicrobial susceptibility of the isolates in Japan. Int J Food Microbiol 903: 303–308.
[6]  Ongor H, Cetinkaya B, Acik MN, Atabay HI (2004) Investigation of arcobacters in meat and faecal samples of clinically healthy cattle in Turkey. Lett Appl Microbiol 384: 339–344.
[7]  Rivas L, Fegan N, Vanderlinde P (2004) Isolation and characterisation of Arcobacter butzleri from meat. Int J Food Microbiol 911: 31–41.
[8]  Scullion R, Harrington CS, Madden RH (2006) Prevalence of Arcobacter spp. in raw milk and retail raw meats in Northern Ireland. J Food Prot 698: 1986–1990.
[9]  Aydin F, Gumussoy KS, Atabay HI, Ica T, Abay S (2007) Prevalence and distribution of Arcobacter species in various sources in Turkey and molecular analysis of isolated strains by ERIC-PCR. J Appl Microbiol 1031: 27–35.
[10]  Wesley IV, Wells SJ, Harmon KM, Green A, Schroeder-Tucker L, et al. (2000) Fecal shedding of Campylobacter and Arcobacter spp. in dairy cattle. Appl Environ Microbiol 665: 1994–2000.
[11]  van Driessche EK, Houf K, van Hoof J, De Zutter L, Vandamme P (2003) Isolation of Arcobacter species from animal feces. FEMS Microbiol Lett 2292: 243–248.
[12]  Hamill S, Neill SD, Madden RH (2008) A comparison of media for the isolation of Arcobacter spp. from retail packs of beef. J Food Prot 74: 850–854.
[13]  De Smet S, Vandamme P, De Zutter L, On SL, Douidah L, Houf K (2010) Arcobacter trophiarum sp. nov. isolated from fattening pigs. Int J Syst Evol Microbiol 61: 356–361.
[14]  Merga Y, Leatherbarrow AJ, Winstanley C, Bennett M, Hart CA, Miller WG, Williams NJ (2011) A Comparison of Arcobacter isolation methods and the diversity of Arcobacter spp in Cheshire, UK. Appl Env Microbiol 75: 1646–1650.
[15]  Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210: 1518–1525.
[16]  Miller WG, Parker CT, Rubenfield M, Mendz GL, Wosten MM, et al.. (2007) The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri. PLoS ONE. 2: e1358. Available: http://www.plosone.org/article/info:doi/?10.1371/journal.pone.0001358 Accessed 25th April 2012.
[17]  Toh H, Sharma VK, Oshima K, Kondo S, Hattori M, et al. (2011) Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. Strain L, both isolated from a microbial fuel cell. Journal of Bacteriology 193: 6411–6412.
[18]  Houf K, Devriese LA, De Zutter L, Van Hoof J, Vandamme P (2001) Development of a new protocol for the isolation and quantification of Arcobacter species from poultry products. Int J Food Microbiol 712: 189–196.
[19]  Kemp R, Leatherbarrow AJ, Williams NJ, Hart CA, Clough HE, et al. (2005) Prevalence and genetic diversity of Campylobacter spp. in environmental water samples from a 100-square-kilometer predominantly dairy farming area. Appl Environ Microbiol 714: 1876–1882.
[20]  Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 104: 506–513.
[21]  Houf K, Tutenel A, De Zutter L, Van Hoof J, Vandamme P (2000) Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii.. FEMS Microbiol Lett 193: 89–94.
[22]  Gonzalez I, Garcia T, Antolin A, Hernandez PE, Martin R (2000) Development of a combined PCR-culture technique for the rapid detection of Arcobacter spp. in chicken meat. Lett Appl Microbiol 30: 207–212.
[23]  Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, et al. (2002) Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J Clin Microbiol 40: 4744–4747.
[24]  Miller WG, Wesley IV, On SL, Houf K, Megraud F, et al. (2009) First multi-locus sequence typing scheme for Arcobacter spp. BMC Microbiol 9: 196.
[25]  Jolley KA, Chan MS, Maiden MC (2004) mlstdbNet - distributed multi-locus sequence typing MLST databases. BMC Bioinformatics 5: 86.
[26]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis MEGA software version 4.0. Mol Biol Evol 248: 1596–1599.
[27]  Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945.
[28]  Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423.
[29]  Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33: 5691–5702.
[30]  Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
[31]  Collado L, Cleenwerck I, Van Trappen S, De Vos P, Figueras MJ (2009) Arcobacter mytili sp. nov., an indoxyl-acetate-hydrolysis negative bacterium isolated from mussels. Int J Syst Evol Microbiol 59: 1391–1396.
[32]  van Driessche E, Houf K, Vangroenweghe F, De Zutter L, Van Hoof J (2005) Prevalence, enumeration and strain variation of Arcobacter species in the faeces of healthy cattle in Belgium. Vet Microbiol 105: 149–154.
[33]  Vilar MJ, Pena FJ, Perez I, Dieguez FJ, Sanjuan ML, et al. 2010 Presence of Listeria, Arcobacter, and Campylobacter spp. in dairy farms in Spain. Berl Munch Tierarztl Wochenschr 123: 58–62.
[34]  Hume ME, Harvey RB, Stanker LH, Droleskey RE, Poole TL, et al. (2001) Genotypic variation among arcobacter isolates from a farrow-to-finish swine facility. J Food Prot 64: 645–651.
[35]  Gonzalez A, Ferrus MA, Gonzalez R, Hernandez J (2007) Molecular fingerprinting of Campylobacter and Arcobacter isolated from chicken and water. Int Microbiol 10: 85–90.
[36]  Houf K, De Zutter L, Van Hoof J, Vandamme P (2002) Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl Environ Microbiol 68: 2172–2178.
[37]  van Driessche E, Houf K, Vangroenweghe F, Nollet N, De Zutter L, et al. (2004) Occurrence and strain diversity of Arcobacter species isolated from healthy Belgian pigs. Res Microbiol 155: 662–666.
[38]  Alm E, Huang K, Arkin A (2006) The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation. PLoS Comput Biol 2: e143 doi:www.ploscompbiol.org/article/info%3Adoi%?2F10.1371%2Fjournal.pcbi.0020143 Accessed 13th April 2012">10.1371/journal.pcbi.0020143. Available: www.ploscompbiol.org/article/info%3Adoi%?2F10.1371%2Fjournal.pcbi.0020143 Accessed 13th April 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133